Tissue engineering for compensating short bowel syndrome


Cite item

Full Text

Abstract

Short bowel syndrome is an important clinical problem characterized by a high incidence of serious complications, deaths and socioeconomic consequences. Parenteral nutrition provides only a temporary solution without reducing the risk of complications. This applies equally to surgical treatment, in particular to small intestine transplantation and related concomitant interventions, which only facilitate the adaptation of the intestine to new conditions. Potential approaches have been analyzed in the treatment of the syndrome of the small intestine, which can be offered by dynamically developing tissue engineering. Various types of carriers and cell types that are used in experiments for obtaining tissue engineering designs of the intestine are discussed. A wide range of variants of such constructions is analyzed that can lead to obtaining an organ prosthesis with a cellular organization and mechanical stability similar to those of the native small intestine, which will ensure the necessary biocompatibility. It is established that one of the optimal carriers for today are extracellular matrices obtained by decellularization of the native small intestine. This process allows to preserve the microarchitecture of the small intestine, which greatly facilitates the process of filling the matrix with cells both in vitro and in vivo. It has also been established that mesenchymal stromal multipotent cells and organoid units obtained from the tissue of the native small intestine are particularly prominent among the most promising participants in the cellular ensemble.

About the authors

A V Kosulin

Санкт-Петербургский государственный педиатрический медицинский университет

Санкт-Петербург

L N Beldiman

Санкт-Петербургский государственный педиатрический медицинский университет

Санкт-Петербург

S V Kromsky

Санкт-Петербургский государственный педиатрический медицинский университет

Санкт-Петербург

A A Kokorina

Санкт-Петербургский государственный педиатрический медицинский университет

Санкт-Петербург

E V Mikhailova

Санкт-Петербургский государственный педиатрический медицинский университет; Институт цитологии Российской академии наук

Санкт-Петербург

M O Sokolova

Военно-медицинская академия им. С.М. Кирова

Санкт-Петербург

A V Kriventsov

Военно-медицинская академия им. С.М. Кирова

Санкт-Петербург

V N Aleksandrov

Санкт-Петербургский государственный педиатрический медицинский университет; Военно-медицинская академия им. С.М. Кирова

Email: vnaleks9@yandex.ru
Санкт-Петербург

References

  1. Александров, В.Н. Тканеинженерные сосудистые трансплан- таты / В.Н. Александров, Г.Г. Хубулава, В.В. Леванович // Педиатр. - 2015. - Т. 6, № 1. - С. 87-96.
  2. Хасанов, Р.Р. Методики аутогенной хирургической рекон- струкции тонкой кишки при синдроме короткой кишки / Р.Р. Хасанов [и др.] // Пермский медицинский журн. - 2015. - № 32 (4). - С. 104-115.
  3. Baimakhanov, Z. Generation tissue-engineered intestinal epitelium from cultured Lgr5 stem cells in vivo / Z. Baimakhanov [et al.] // Regenerative Therapy. - 2016. - № 5. - P. 46-48.
  4. Bianchi, A. Intestinal loop lengthening - a technique for increasing small intestinal length / A. Bianchi // J. Pediatric surgery. - 1980. - № 15. - P. 145-151.
  5. Chen, M.K. Small bowel tissue engineering using small intestinal submucosa as a scaffold / M.K. Chen, S.F. Badylak // Journal of surgical research. - 2001. - № 99. - P. 352-358.
  6. Choi, R.S. Preliminary studies of tissue-engineered intestine using isolated epithelial organoid units on tubular synthetic biodegradable scaffolds / R.S. Choi, J. P. Vacanti // Transplantation proceedings. - 1997. - № 29. - Р. 848- 851.
  7. Evans, G.S. The development of a method for the preparation of rat intestinal epithelial cell primary cultures / G.S. Evans [et al.] // Journal of cell science. - 1992. - № 101. - P. 219-231.
  8. Finkbeiner, S.R. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids / S.R. Finkbeiner [et al.] // Biology open. - 2015. - № 4. - Р. 1462-1472.
  9. Fishman, J.A. Infections in immunocompromised hosts and organ transplant recipients: essentials / J.A. Fishman // Liver transpl. - 2011. - Suppl 3. - P. 34-37.
  10. Grikscheit, T.C. Tissue-engineered small intestine mproves recovery after massive small bowel resection / T.C. Grikscheit [et al.] // Annals of Surgery. - 2004. - № 240. - P. 748-754.
  11. Hori, Y. Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding / Y. Hori [et al.] // Journal of surgical research. - 2002. - № 102. - Р. 156-160.
  12. Kim, E.S. Teduglutide: a review in short bowel syndrome / E.S. Kim, S.J. Keam // Drugs. - 2017. - № 77. - Р. 345-352.
  13. Kim, H.B. Serial transverse enteroplasty for short bowel syndrome: a case report / H.B. Kim [et al.] // Journal of pediatric surgery. - 2003. - № 38. - Р. 881-885.
  14. Levin, D.E. Human tissue-engineered small intestine forms from postnatal progenitor cells / D.E. Levin [et al.] // Journal of pediatric surgery. - 2013. - № 48. - Р. 129-137.
  15. Mohamed, M.S. Intestinal stem cells and stem cell-based therapy for intestinal diseases / M.S. Mohamed, Y. Chen, C-L Yao // Cytotechnology. - 2015. - № 67. - Р. 177-189.
  16. Nakao, M. Proposal of intestinal tissue engineering combined with Bianchi’s procedure / M. Nakao [et al.] // Journal of pediatric surgery. - 2015. - № 50. - Р. 573-580.
  17. Perez, A. Tissue-engineered small intestine / A. Perez, [et al.] // Transplantation. -2002. - № 74. - Р. 619-623.
  18. Sala, F.G. Tissue-engineered small intestine and stomach form from autologous tissue in preclinical large animal model / F.G. Sala [et al.] // Journal of surgical research. - 2009. - № 156. - Р. 205-212.
  19. Sala, F.G. A multicellular approach forms a significant amount of tissue-engineered small intestine in the mouse / F.G. Sala [et al.] // Tissue engineering. - 2011. - № 17. - Р. 1841-1850.
  20. Sigalet, D.L. Short bowel syndrome in infants and children: an overview / D.L. Sigalet // Seminars in pediatric surgery. - 2001. - № 10. - Р. 49-55.
  21. Spencer, A.U. Pediatric short-bowel syndrome: the cost of comprehensive care / A.U. Spencer [et al.] // Am. J. Clin. Nutr. - 2008. - № 88. - Р. 1552-1559.
  22. Spencer, A.U. Pediatric short bowel syndrome. Redefining predictors of success / A.U. Spencer [et al.] // Annals of surgery. - 2005. - № 242. - Р. 403-412.
  23. Spurrier, R.G. Tissue engineering the small intestine / R.G. Spurrier, T.C. Grikscheit // Clinical gastroenterology and hepatology. - 2013. - № 11. - Р. 354-358.
  24. Thompson, J.S. Surgical approach to short-bowel syndrome: experience in a population of 160 patients / J.S. Thompson [et al.] // Annals of surgery. - 1995. - № 222. - Р. 600-607.
  25. Totonelli, G. A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration / G. Totonelli [et al.] // Biomaterials. - 2012. - № 33. - Р. 3401-3410.
  26. Vanderhoof, J. A. Short-bowel syndrome in children and adults / J.A. Vanderhoof, A. N. Langnas // Gastroenterology. - 1997. - № 113. - Р. 1767- 1778.
  27. Wales, P.W. Short bowel syndrome: epidemiology and etiology / P.W. Wales, E.R. Christison-Lagay // Seminars in pediatric surgery. - 2010. - № 19. - Р. 3-9.
  28. Wang, Z.Q. Experimental assessment of small intestinal submucosa as a small bowel graft in a rat model / Z.Q. Wang, Y. Watanabe, A. Toki // Journal of pediatric surgery. - 2003. - № 38. - Р. 1596-1601.

Copyright (c) 2018 Kosulin A.V., Beldiman L.N., Kromsky S.V., Kokorina A.A., Mikhailova E.V., Sokolova M.O., Kriventsov A.V., Aleksandrov V.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies