Comparative chemical composition analysis of femoral condyles bone tissue in health and in deforming arthrosis


Cite item

Full Text

Abstract

A comparative analysis of the chemical composition of the medial and lateral condyles of the femur in norm and with deforming arthrosis of the third degree is presented. It was found that when the bone tissue of the femur is degraded from the surface, a decrease in crystallinity is observed in depth, quantitative and qualitative changes in the organic bone matrix, in particular, a decrease in the proportion of the protein component, a change in the phase inorganic composition, and an increased degree of substitution of calcium in hydroxyapatite for ions of other metals. And the most dramatic changes are observed in bone tissue located near the pathologically deformed areas. It is shown that the data for normal bone tissue of the lateral and medial condyle of one specimen differ, which can be caused by different degrees of stress on the condyles themselves in the process of vital activity of the organism caused by asymmetry and a different shape of their articular surfaces. With deforming arthrosis in the surface layer of bone tissue, the concentration of calcium and a number of other metals increases, while the proportion of the protein component decreases. It was revealed that in the affected bone replacement of phosphate tetrahedra with carbonate ions occurs, as well as substitution of cations of divalent calcium with ions of other metals such as copper and manganese, and especially ferric cations. This breaks the overall structure of the crystal lattice of hydroxyapatite and affects the biomechanical properties of the surface, in particular, the reduction of trophism and the elasticity of the surface. In osteophyte tests, partial replacement of phosphate groups with carbonate groups occurs. Isomorphic structural substitutions caused by deposition of crystalline impurities lead to a change in the ratio of calcium and phosphorus concentrations. Excessive deposition of calcium salts leads to the formation of osteophytes.

About the authors

E S Ihalainen

Военно-медицинская академия им. С.М. Кирова

I V Gayvoronsky

Военно-медицинская академия им. С.М. Кирова; Санкт-Петербургский государственный университет

V V Khominets

Военно-медицинская академия им. С.М. Кирова

A A Semenov

Военно-медицинская академия им. С.М. Кирова

semfeodosia82@mail.ru

O M Fandeeva

Военно-медицинская академия им. С.М. Кирова

References

  1. Брик, А.Б. Биоминералогические подходы к изучению изо- морфных замещений и мест локализации примесей в наноразмерных подсистемах эмали и дентина зубов / А.Б. Брик [и др.] // Минералогич. журн. - 2008. - Т. 30. - С. 13-25.
  2. Гайворонский, И.В. Вариантная анатомия и морфометриче- ская характеристика мыщелков большеберцовой кости взрослого человека / И.В. Гайворонский [и др.] // Морфолог. науки и клин. мед. - СПб., 2015. - С. 44-47.
  3. Лемешева, С.А. Состав и структура костных тканей человека как отражение процессов патогенной минерализации при коксартрозе / С.А. Лемешева [и др.] // Вестн. Ом. ун-та. - 2010. - № 2. - С. 106-112.
  4. Накоскин, А.Н. Изменения биохимического состава бедренной кости у людей разного возраста / А.Н. Накоскин [и др.] // Проблемы старения и долголетия. - 2008. - Т. 17. - С. 21-26.
  5. Старостенко, Н.В. Замещение кальция и фосфора на пра- зеодим и кремний в структуре гидроксиапатита / Н.В. Старостенко [и др.] // Журн. неорган. химии. - 2012. - Т. 57. - С. 1274-1277.
  6. Chappard, С. Analysis of hydroxyapatite crystallites in subchondral bone by Fourier transform infrared spectroscopy and powder neutron diffraction methods / C. Chappard [at al.] // Comptes Rendus Chimie. - 2015. - Vol. 19. - P. 1625-1630.
  7. Cardoso, D.A. Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration / D.A. Cardoso [at al.] // J. Biomed. Mater. Res. Part B. - 2012. - P. 2316-2326.
  8. Chandramohan, D. Contribution of Biomaterials to Orthopaedics as Bone Implants - A Review / D. Chandramohan [at al.] // International Journal of Materials Science. - 2010. - Vol. 5. - P. 399-409.
  9. Dorozhkin, S.V. Biological and Medical Significance of Calcium Phosphates / S.V. Dorozhkin [at al.] // Angew. Chem. Int. Ed. - 2002. - Vol. 41. - P. 3130-3146.
  10. Jenssen, H. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections / H. Jenssen [at al.] // Biomaterials. - 2010. - Vol. 31. - P. 9519-9526. 180 2 (62) - 2018 ВЕСТНИК РОССИЙСКОЙ ВОЕННО-МЕДИЦИНСКОЙ АКАДЕМИИ Экспериментальные исследования
  11. Kay, M.I. Crystal structure of hydroxyapatite / M.I. Kay [at al.] // Nature. - 1964. - Vol. 204. - P. 1050-1052.
  12. Nacarino-Meneses, С. Multidisciplinary characterization of the long-bone cortex growth patterns through sheep’s ontogeny / C. Nacarino-Meneses [at al.] // Journal of Structural Biology. - 2015. - Vol. 191. - P. 1-9.
  13. Rao, D.V. Synchrotron-based XRD from rat bone of different age groups / D.V. Rao [at al.] // Materials Science and Engineering C. - 2017. - № 74. - P. 207-218.
  14. Schaffler, M.B. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone / M.B. Schaffler [at al.] // Bone. - 2004. - Vol. 34. - P. 443-453.

Copyright (c) 2018 Ihalainen E.S., Gayvoronsky I.V., Khominets V.V., Semenov A.A., Fandeeva O.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies