Polymorphisms of leukocyte genes human and congenital antigen immunity associated with different the severity of the course of the new coronavirus infections

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The most significant single nucleotide human leukocyte antigen genes polymorphisms and innate immunity genes associated with varying degrees of acute respiratory infection severity are considered–COVID-19 caused by the SARS-CoV-2 coronavirus. As data accumulated, it became clear that the SARS-CoV-2 virus exhibits significant regional, ethnic, and individual specificity. This is due to the population groups’ genetic characteristics. This is necessary to reliably know the human genotype relationship with the COVID-19 course severity (asymptomatic, mild, moderate, severe, and extremely severe up to fatal outcomes) for more successful therapy and vaccination. At the same time, it was also known that the innate immunity system is on the first line of defense against the pathogenic penetration into the body, and the human leukocyte antigen system encodes molecules of the same name on the surface of cells that present various antigens, including viral infection pathogens, and determine the severity of the course of many diseases; therefore, these systems’ genes. This approach makes it possible to assess the likelihood of a severe and extremely severe disease course in healthy and infected people, which in turn contributes to the correct therapy strategy, pharmacotherapy, and vaccination, as well as to create new antiviral therapeutic and preventive medicines. The genetically determined immune response heterogeneity to SARS-CoV-2 infection requires further study, since there is no unambiguous opinion about the leading mechanism that determines disease severity.

About the authors

Alexander M. Butusov

Military Innovation Technopolis “ERA”

Email: butus98@yandex.ru
ORCID iD: 0000-0002-3074-2449

Master

Russian Federation, Anapa

Olga V. Krusko

Military Innovation Technopolis “ERA”

Email: panarinaolya08@mail.ru
ORCID iD: 0000-0001-9111-7914
SPIN-code: 4702-6002

Candidate of Biological Sciences

Russian Federation, Anapa

Petr K. Potapov

Military Innovative Technopolis "ERA"

Email: forwardspb@mail.ru
SPIN-code: 5979-4490

Candidate of Medical Sciences

Russian Federation, Anapa

Dmitriy S. Derevyankin

Military Innovation Technopolis “ERA”

Email: derev.dima1@yandex.ru
ORCID iD: 0000-0003-0370-0347

Master

Russian Federation, Anapa

Valentin D. Zagranichnov

Military Innovation Technopolis “ERA”

Email: valentin.zagranichnov@yandex.ru
ORCID iD: 0000-0003-0238-8486

Resident

Russian Federation, Anapa

Svyatoslav S. Malyshkin

Military Innovation Technopolis “ERA”

Author for correspondence.
Email: svytoslavmal@gmail.com
ORCID iD: 0000-0003-4366-0028
SPIN-code: 8109-3446

Master

Russian Federation, Anapa

Evgeniy A. Zhurbin

Military Innovation Technopolis “ERA”

Email: zhurbin-90@mail.ru
ORCID iD: 0000-0002-0867-3838
SPIN-code: 8426-1354
Scopus Author ID: 57198886746

Candidate of Medical Sciences

Russian Federation, Anapa

References

  1. Ryu S, Chun BC. An interim review of the epidemiological characteristics of 2019 novel coronavirus. Epidemiology and Health. 2020;42:e2020006. doi: 10.4178/epih.e2020006
  2. Moskalev AV, Gumilevskiy BY, Apchel VY, Cygan VN. Old new coronavirus. Bulletin of the Russian Military Medical Academy. 2020;22(2):182–188. (In Russ.). doi: 10.17816/brmma50070
  3. Zaykovskaya AV, Gladysheva AV, Kartashov MYu, et al. In vitro study of biological properties of SARS-CoV-2 coronavirus strains related to various genetic variants. Problems of Particularly Dangerous Infections. 2022;(1):94–100. (In Russ.). doi: 10.21055/0370-1069-2022-1-94-100
  4. Saponaro F, Rutigliano G, Sestito S, et al. ACE2 in the era of SARS-CoV-2: Controversies and novel perspectives. Front Mol Biosci. 2020;7:e588618. doi: 10.3389/fmolb.2020.588618
  5. Khanmohammadi S, Rezaei N. Role of Tol-like receptors in the pathogenesis of COVID-19. J Med Virol. 2021;93(5):2735–2739. doi: 10.1002/jmv.26826
  6. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5(10):987–995. doi: 10.1038/ni1112
  7. Moskalev AV, Gumilevsky BY, Apchel VY, Tsygan VN. Modern view on the role of pattern-recognition receptors and signaling pathways in the development of innate immunity in viral infections. Bulletin of the Russian Military Medical Academy. 2022;24(2): 381–389. (In Russ.). doi: 10.17816/brmma91018
  8. Van Der Made CI, Simons A, Schuurs-Hoeijmakers J, et al. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020;324(7):663–673. doi: 10.1001/jama.2020.13719
  9. Zhang C, Wu Z, Li J-W, et al. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954. doi: 10.1016/j.ijantimicag.2020.105954
  10. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607–613. doi: 10.1016/j.jinf.2020.03.037
  11. Richardson PJ, Corbellino M, Stebbing J. Baricitinib for COVID-19: a suitable treatment? Lancet Infect Dis. 2020;20(9):1013–1014. doi: 10.1016/S1473-3099(20)30270-X
  12. Tian Y, Rong L, Nian W, He Y. Gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9):843–851. doi: 10.1111/apt.15731
  13. McElvaney OJ, McEvoy NL, McElvaney OF, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med. 2020;202(6):812–821. doi: 10.1164/rccm.202005-1583OC
  14. Gumilevskiy BY, Moskalev AV, Gumilevskaya OP, et al. Features of immunopathogenesis of a new coronavirus infection. Bulletin of the Russian Military Medical Academy. 2021;23(1):187–198. (In Russ.). doi: 10.17816/brmma63654
  15. Chen Y-M, Zheng Y, Yu Y, et al. Blood molecular markers associated with COVID-19 immunopathology and multi-organ damage. EMBO J. 2020;39(24):e105896. doi: 10.15252/embj.2020105896
  16. Sposito B, Broggi A, Pandolfi L, et al. The interferon landscape along the respiratory tract impacts the severity of COVID-19. Cell. 2021;184(19):4953–4968. doi: 10.1016/j.cell.2021.08.016
  17. Minnullin TI, Stepanov AV, Chepur SV, et al. Immunological aspects of SARS-CoV-2 coronavirus damage. Bulletin of the Russian Military Medical Academy. 2021;23(2):187–198. (In Russ.). doi: 10.17816/brmma72051
  18. Saponi-Cortes JMR, Rivas MD, Calle-Alonso F, et al. IFNL4 genetic variant can predispose to COVID-19. Sci Rep. 2021;11:21185. doi: 10.1038/s41598-021-00747-z
  19. Rahimi P, Tarharoudi R, Rahimpour A, et al. The association between interferon lambda 3 and 4 gene single-nucleotide polymorphisms and the recovery of COVID-19 patients. Virol J. 2021;18:221. doi: 10.1186/s12985-021-01692-z
  20. Agwa SHA, Kamel MM, Elghazaly H, et al. Association between interferon-lambda-3 rs12979860, TLL1 rs17047200 and DDR1 rs4618569 variant polymorphisms with the course and outcome of SARS-CoV-2 patients. Genes. 2021;12(6):830. doi: 10.3390/genes12060830
  21. Grimaudo S, Amodio E, Pipitone RM, et al. PNPLA3 and TLL-1 polymorphisms as potential predictors of disease severity in patients with COVID-19. Front Cell Dev Biol. 2021;9:1589. doi: 10.3389/fcell.2021.627914
  22. Klaassen K, Stankovic B, Zukic B, et al. Functional prediction and comparative population analysis of variants in genes for proteases and innate immunity related to SARS-CoV-2 infection. Infect Genet Evol. 2020;84:104498. doi: 10.1016/j.meegid.2020.104498
  23. Magusali N, Graham AC, Piers TM, et al. A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the OAS1 gene. Brain. 2021;144(12):3727–3741. doi: 10.1093/brain/awab337
  24. Zhang Y, Qin L, Zhao Y, et al. Interferon-induced transmembrane protein 3 genetic variant rs12252-C associated with disease severity in coronavirus disease 2019. J Infect Dis. 2020;222(1):34–37. doi: 10.1093/infdis/jiaa224
  25. Zhu X, Wang Y, Zhang H, et al. Genetic variation of the human α-2-Heremans-Schmid glycoprotein (AHSG) gene associated with the risk of SARS-CoV infection. PloS One. 2011;6(8):E23730. doi: 10.1371/journal.pone.0023730
  26. Kryukov EV, Salukhov VV, Kotiv BN, et al. Factors affecting the content of Ig G-antibodies to S-protein SARS-CoV-2 in the blood of reconvalescents after new coronaviral infection (COVID-19). Medical Council. 2022;(4):51–65. (In Russ.). doi: 10.21518/2079-701X-2022-16-4-51-65
  27. Wu Y, Feng Z, Li P, Yu Q. Relationship between ABO blood group distribution and clinical characteristics in patients with COVID-19. Clin Chim Acta. 2020;509:220–223. doi: 10.1016/j.cca.2020.06.026
  28. Senapati S, Kumar S, Singh AK, et al. Assessment of risk conferred by coding and regulatory variations of TMPRSS2 and CD26 in susceptibility to SARS-CoV-2 infection in human. J Genet. 2020;99:53. doi: 10.1007/s12041-020-01217-7
  29. Deng H, Yan X, Yuan L. Human genetic basis of coronavirus disease 2019. Signal Transduct Target Ther. 2021;6:344. doi: 10.1038/s41392-021-00736-8
  30. Kulski JK, Shiina T, Dijkstra JM. Genomic diversity of the major histocompatibility complex in health and disease. Cells. 2019;8(10):1270. doi: 10.3390/cells8101270
  31. Ambagala APN, Solheim JC, Srikumaran S. Viral interference with MHC class I antigen presentation pathway: the battle continues. Vet Immunol Immunopathol. 2005;107(1-2):1–15. doi: 10.1016/j.vetimm.2005.04.006
  32. Yewdell JW, Hill AB. Viral interference with antigen presentation. Nat Immunol. 2002;3(11):1019–1025. doi: 10.1038/ni1102-1019
  33. Nguyen A, David JK, Maden SK, et al. Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2. J Virol. 2020;94(13):e00510-20. doi: 10.1128/JVI.00510-20
  34. Shkurnikov M, Nersisyan S, Jankevic T, et al. Association of HLA class I genotypes with severity of coronavirus disease-19. Front Immunol. 2021;12:423. doi: 10.3389/fimmu.2021.641900
  35. Ivchenko EV, Kotiv BN, Ovchinnikov DV, Bucenko SA. Results of the work of the Military medical academy research institute of novel coronavirus infection problems through 2020–2021. Bulletin of the Russian Military Medical Academy. 2021;23(4):93–104. (In Russ.). doi: 10.17816/brmma83094
  36. Tomita Y, Ikeda T, Sato R, Sakagami T. Association between HLA gene polymorphisms and mortality of COVID-19: An in silico analysis. J Virol. 2020;94(13):e00510-20. doi: 10.1002/iid3.358
  37. Mohammadpour S, Torshizi Esfahani A, Halaji M, et al. An updated review of the association of host genetic factors with susceptibility and resistance to COVID-19. J Cell Physiol. 2020;236(1):49–54. doi: 10.1002/jcp.29868
  38. Debnath M, Banerjee M, Berk M. Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes. FASEB J. 2020;34(7):8787–8795. doi: 10.1096/fj.202001115R
  39. Kiyotani K, Toyoshima Y, Nemoto K, Nakamura Y. Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2. J Hum Genet. 2020;65(7):569–575. doi: 10.1038/s10038-020-0771-5
  40. Pisanti S, Deelen J, Gallina AM, et al. Correlation of the two most frequent HLA haplotypes in the Italian population to the differential regional incidence of COVID-19. J Transl Med. 2020;18:352. doi: 10.1186/s12967-020-02515-5
  41. Migliorini F, Torsiello E, Spiezia F, et al. Association between HLA genotypes and COVID-19 susceptibility, severity and progression: a comprehensive review of the literature. Eur J Med Res. 2021;26:84. doi: 10.1186/s40001-021-00563-1
  42. Zhogolev SD, Gorenchuk AN, Kuzin AA, et al. Evaluation of vaccine “Sputnik V” immunogenicity and reactogenicity when it is used in military personnel. Bulletin of the Russian Military Medical Academy. 2021;23(4):147–152. (In Russ.). doi: 10.17816/brmma80760

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Butusov A.M., Krusko O.V., Potapov P.K., Derevyankin D.S., Zagranichnov V.D., Malyshkin S.S., Zhurbin E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies