Magnetic constraints and susceptible inversions of Balapur Fault at central Kashmir Basin, NW Himalaya

Cover Page

Cite item

Full Text

Abstract

   Research subject. Subsurface investigations of the Balapur Fault at central Kashmir Basin, NW Himalaya through groundmagnetic surveys and data interpretations.   Materials and methods. The total magnetic intensity data was obtained using ground magnetic surveys carried out by proton precession magnetometers at 15 m spacing. The magnetic constraints and inversions of the Balapur fault in the central Kashmir basin of NW Himalaya were analyzed.   Results. The total magnetic intensity was found averaging at 97.7 with 45.8 nT as magnetic minima and 140.9 nT as magnetic maxima. The minima’s ranging from 45.8 and 55.8 nT in the gridded profile are inferred at the Balapur fault. Further, the fault-related susceptibility index was recorded from 0.0035 SI to 0.0015 SI, and the observed and predicted response values were found ranging between 67.1 to 87.7 and 67.4 to 86.6 nT respectively.   Conclusion. The study suggests that the Balapur fault in the central Kashmir has produced high subsurface hydraulic activities and, therefore, evident low magnetic anomalies. The analysis reveals a thick minima region related to the fault and also indicated the presence of associated structures with the main Balapur fault segment.

About the authors

A. M. Dar

National Institute of Technology Srinagar

Email: ayazmohmood@hotmail.com

S. K. Bukhari

National Institute of Technology Srinagar

Email: skbukhari@nitsri.net

References

  1. Ahmad S., Bhat M. I. (2012) Tectonic geomorphology of the Rambiara basin, SW Kashmir Valley reveals emergent out-of-sequence active fault system. Himal. Geol., 33 (2), 162-172.
  2. Ahmad S., Bhat M. I., Madden C., Bali B. S. (2014) Geomorphic analysis reveals active tectonic deformation on the eastern flank of the Pir-Panjal range, Kashmir Valley, India. Arab. J. Geosci., 7(2225-2235). doi: 10.1007/s12517-013-0900-y
  3. Arkani-Hamed J., Langel R. A., Purucker M. (1994) Magnetic anomaly maps of the Earth derived from POGO and Magsat data. J. Geophys. Res., 99: 24075-24090.
  4. Blakely R. J. (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge, UK.
  5. Cain J. C., Wang Z., Schmitz D. R., Meyer J. (1989) The geomagnetic spectrum for 1980 and core crustal separation. Geophys. J., 97: 443-447.
  6. Clifton R. (2015) Magnetic depths to basalts: extension of spectral depths method. Explor. Geophys., 46 (3), 284-296. doi: 10.1071/EG13096
  7. Clifton R. (2018) Magnetic depth transects of the Northern Territory. Northern Territory Geological Survey, Digital Information Package DIP 020.
  8. Cooper G. R. J. (2000) Gridding Gravity Data Using an Equivalent Layer. Comput. Geosci., 26 (2), 227-233. doi: 10.1016/S0098-3004(99)00089-8
  9. Cordell L. (1992) A Scattered Equivalent-Source Method for Interpolation and Gridding of Potential-Field Data in Three Dimensions. Geophysics, 57 (4), 629-636. doi: 10.1190/1.1443275
  10. Dar A. M. (2015) An Approach of Remote Sensing and GIS for the Delineation of Lineaments in the Suru Valley (Ladakh Himalayas). J. Remote Sensing GIS, 4 (2), 4:144, doi: 10.4172/2469-4134.1000144
  11. Dar A. M., Bukhari S. K. (2020) Characteristics of magnetic anomalies and subsurface structure constraints of Balapur fault in Kashmir basin, NW Himalaya. Phys. Earth Planet. Inter., 309, 106599. doi: 10.1016/j.pepi.2020.106599
  12. Dar A. M., Lasitha S. (2015) Application of Geophysical Ground Magnetic Method for the Delineation of Geological Structures: A Study in Parts of Villupuram District, Tamilnadu. J. Geol. Geophys., 4 (3), 4: 209. URL: https://www.longdom.org/open-access/application-of-geophysical-ground-magnetic-method-for-the-delineation-of-geological-structures-a-study-in-parts-of-villu-40031.html
  13. Dar A. M., Lasitha S., Bukhari K., Yousuf M. (2017) Delineating Deep Basement Faults in Eastern Dharwar Craton through Systematic Methods of Geophysics and Remote Sensing vis-à-vis the Concerns of Moderate Seismicity. J. Geogr. Nat. Disast., 7 (1), 7:184. doi: 10.4172/2167-0587.1000184
  14. Dobrin M. B., Savit C. H. (1988) Introduction to Geophysical Prospecting. 4th Edition. McGraw-Hill, N. Y., 867 p.
  15. Ellis R., de Wet B., Macleod I. M. (2012) Inversion of magnetic data from remanent and induced sources. Presented at the 22sup>nd ASEG International Geophysical Conference. Australia Society of Exploration Geophysicists.
  16. Emilia D. A. (1973) Equivalent Sources Used as an Analytic Base for Processing Total Magnetic Field Profiles. Geophysics, 38 (2), 339-348. doi: 10.1190/1.1440344
  17. Gonzales W. D., Tsuritani B., Clua De Gonzales A. (1999) Interplanetary origin of geomagnetic storms. Space Sci. Rev., 88, 529-562. http://solid_earth.ou.edu/notes/potential/legendre.gif (Copyright 2004, J. Ahern)
  18. Grauch V. J. S., Hudson M. R., Manor S. A. (2000) Aeromagnetic signatures of intrabasinal faults, Albuquerque basin, New Mexico: Implications for layer thickness and magnetization: SEG Technical Program Expanded Abstracts, 363-366.
  19. Henkel H., Guzmin M. (1977) Magnetic feature of fracture zones. Geoexploration, 15 (3), 173-181.
  20. Jackson A., Jonkers A. R. T., Walker M. R. (2000) Four centuries of geomagnetic secular variation from historical records. Philos. T. Roy Soc. A., 358 (1768), 957-990. doi: 10.1098/rsta.2000.0569
  21. Kivior I. (1996) A geophysical study of the structure and crustal environment of the Polda Rift, South Australia. Ph. D. thesis. Department of Geology and Geophysics. The University of Adelaide.
  22. Kono M., Roberts H. R. (2002) Recent geodynamo simulations and observations of the geomagnetic field. Rev. Geophys., 40 (4), 4-1-4-53, doi: 10.1029/2000RG000102
  23. Kowalczyk P., Oldenburg D., Phillips N., Nguyen T. H., Thomson V. (2010) Acquisition and analysis of the 2007-2009 geoscience bc airborne data: Australian Society of Exploration Geophysicists – PESA Airborne Gravity Workshop.
  24. Lanza R., Meloni A. (2006) The Earth’s Magnetism: An Introduction for Geologists. N. Y., Berlin: Springer, 278 p.
  25. Lelievre P. G., Oldenburg D. W. (2009) A 3d total magnetization inversion applicable when significant, complicated remanence is present. Geophysics, 74 (3), L21-L30.
  26. Li Y., Shearer S., Haney M., Dannemiller N. (2010) Comprehensive approaches to 3d inversion of magnetic data affected by remanent magnetization. Geophysics, 75 (1), L1-L11.
  27. Liu S., Hu X., Liu T., Feng J., Gao W., Qiu L. (2013) Magnetization vector imaging for borehole magnetic data based on magnitude magnetic anomaly. Geophysics, 78 (6), D429-D444.
  28. Madden C., Ahmad S., Meigs A. (2011) Geomorphic and paleoseismic evidence for late Quaternary deformation in the southwest Kashmir Valley, India: Out of-sequence thrusting, or deformation above a structural ramp? Amer. Geophys. Union Abstr., T54B-07.
  29. Malin S. R. C., Barraclough D. R. (1982) 150sup>th anniversary of Gauss’s first absolute magnetic measurement. Nature, 297, 285.
  30. Martinez C., Li Y. (2015) Lithologic characterization using airborne gravity gradient and aeromagnetic data for mineral exploration: A case study in the Quadrilatero´ Ferr´ıfero, Brazil: Interpretation.
  31. Meixner A. J., Johnston S. (2012) An iterative approach to optimising depth to magnetic source using the spectral method. ASEG 22sup>nd Geophysical Conference and Exhibition, Brisbane 2012.
  32. Mendonca C. A., Silva J. B. C. (1994) The Equivalent Data Concept Applied to the Interpolation of Potential Field Data. Geophysics, 59 (5), 722-732. doi: 10.1190/1.1443630
  33. Mendonca C. A., Silva J. B. C. (1995) Interpolation of Potential-Field Data by Equivalent Layer and Minimum Curvature: A Comparative Analysis. Geophysics, 60 (2), 399-407. doi: 10.1190/1.1443776
  34. Phillips J. D. (2014) Using vertical Fourier transforms to invert potential-field data to magnetization or density models in the presence of topography. SEG Technical Program Expanded Abstracts 2014, 1339-1343. doi: 10.1190/segam2014-0226.1
  35. Pilkington M. (2016) Resolution measures for 3D magnetic inversions. Geophysics, 81 (2), J15-J23. doi: 10.1190/GEO2015-0081.1
  36. Pilkington M., Beiki M. (2013) Mitigating remanent magnetization effects in magnetic data using the normalized source strength. Geophysics, 78 (3), J25-J32. doi: 10.1190/geo2012-0225.1
  37. Pilkington M., Keating P. (2004) Contact mapping from gridded magnetic data–a comparison of techniques. Explor. Geophys., 35 (4), 306-311. doi: 10.1071/EG04306
  38. Sharma P. V. (1997) Environmental and engineering geophysics. Cambridge University Press. Cambridge, UK.
  39. Silva J. B. C. (1986) Reduction to the Pole as an Inverse Problem and Its Application to Low-Latitude Anomalies. Geophysics, 51 (2), 369-382. doi: 10.1190/1.1442096
  40. Spector A., Grant F. S. (1970) Statistical models for interpreting aeromagnetic data. Geophysics, 35 (2), 293-302.
  41. Sun J., Li Y. (2011) Geophysical inversion using petrophysical constraints with application to lithology differentiation. 81sup>st SEG Annual Meeting, 2644-2648.
  42. Telford W. M., Geldhart L. P., Sheriff R. E. (1990) Applied Geophysics (second ed.). Cambridge University Press, Cambridge, 770 p.
  43. Tontini F. C., Cocchi L., Carmisciano C. (2006) Depth-to-the-bottom optimization for magnetic data inversion: Magnetic structure of the Latium volcanic region, Italy. J. Geophys. Res., 111 (B11), B11104. doi: 10.1029/2005JB004109
  44. Valet J. P. (2003) Time variations in geomagnetic intensity. Rev. Geophys., 41 (1), 4:1-44. doi: 10.1029/2001RG000104

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Dar A.M., Bukhari S.K.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».