Famennian negative carbon isotope excursion in the Izyayu River section (Tchernyshev Uplift, Cis-Uralian Foredeep)

Cover Page

Cite item

Full Text

Abstract

   Research subject. The article is focused on manifestations of the Early-Middle Famennian negative excursion in carbon isotope composition in the Izyayu River section (south of the Tchernyshev Uplift).   Aim. The study is aimed to reconstructing of the probable causes of this isotope excursion.   Materials and methods. The article is based on the results of study of the deep-shelf lower-middle Famennian sequence of the Izyayu River section. The carbon isotopic composition was studied for the carbonate samples and conodont elements (32 and 9 samples respectively).   Results. The lightening of the carbon isotopic composition of carbonates by 2.5 %, and of the carbon isotopic composition of conodont elements by 4 % were found in the Pal. gracilis gracilis–Pal. marginifera marginifera zonal interval. The difference between the carbon isotopic compositions of carbonates and conodont elements increases in this interval by more than 2.5 %. Possible reasons for the observed variations could be the intensification of terrigenous runoff due to regression, a relatively high content of carbon dioxide in the atmosphere, and, possibly, a local decline in primary bioproductivity.   Conclusions. The negative carbon isotope shift spans Pal. gracilis gracilis–Pal. marginifera marginifera zonal interval in the Izyayu River section. The shift corresponds to the global decreasing in the δ13Ccarb values in the early/middle Famennian boundary interval. The increase in supply of the isotopically light carbon with terrigenous runoff and decrease in the primary bioproductivity are considered as probable causes of the carbon isotope excursion.

About the authors

D. A. Gruzdev

Institute of Geology FRC Komi SC UB RAS

Email: dag79@yandex.ru

A. V. Zhuravlev

Institute of Geology FRC Komi SC UB RAS

Ya. A. Vevel

Institute of Geology FRC Komi SC UB RAS

A. V. Erofeevsky

Institute of Geology FRC Komi SC UB RAS

I. V. Smoleva

Institute of Geology FRC Komi SC UB RAS

References

  1. Журавлев А. В. Динамика таксономического разнообразия конодонтов в позднем девоне –раннем карбоне (фаменский–серпуховский века) А. В. Журавлев // Литосфера. – 2019. – 19 (1). – 81-91. doi: 10.24930/1681-9004-2019-19-1-81-91
  2. Журавлев А. В. Численное моделирование первичной биопродуктивности пелагических экосистем палеозоя / А. В. Журавлев // Вестн. геонаук. – 2022. – 8 (332). – 38-43. doi: 10.19110/geov.2022.8.4
  3. Журавлев А. В. Строение разреза изъяюской свиты (верхний девон – нижний карбон) в типовой местности – южной части поднятия Чернышева / А. В. Журавлев, Я. А. Вевель // Литосфера. –2021. – 21 (4). – 546-559. doi: 10.24930/1681-9004-2021-21-4-546-559
  4. Тимонин Н. И. Тектоника гряды Чернышева (Северное Приуралье) / Н. И. Тимонин. – Л.: Наука, 1975. – 130 с.
  5. Buggisch W., Joachimski M. M. (2006) Carbon isotope stratigraphy of the Devonian of Central and Southern Europe. Palaeogeogr., Palaeoclimatol., Palaeoecol., 240, 68-88.
  6. Foster G., Royer D., Lunt D. (2017) Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun., 8, 14845. doi: 10.1038/ncomms14845
  7. George A. D., Chow N., Trinajstic K. M. (2014) Oxic facies and the Late Devonian mass extinction, Canning Basin, Australia. Geology, 42, 327-330.
  8. Girard C., Cornée J.-J., Charruault A.-L., Corradini C., Weyer D., Bartzsch K., Joachimski M., Feist R. (2017) Conodont biostratigraphy and palaeoenvironmental trends during the Famennian (Late Devonian) in the Thuringian Buschteich section Germany). Newslett. Stratigr., 50, 71-89.
  9. Haq B. U., Schutter S. R. (2008) A chronology of Paleozoic sea-level changes. science, 322 (5898), 64-68. doi: 10.1126/science.1161648
  10. Hartke E. R., Bradley D., Cramer B. D., Calner M., Melchin M. J., Barnett B. A., Oborny S. C., Bancroft A. M. (2021) Decoupling δ13Ccarb and δ13Corg at the onset of the Ireviken Carbon Isotope Excursion: Δ13C and organic carbon burial (forg) during a Silurian oceanic anoxic event. Global Planet. Change, 196, 103373. doi: 10.1016/j.gloplacha.2020.103373
  11. Hayes J. M., Strauss H., Kaufman A. J. (1999) The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol., 161, 103-125. doi: 10.1016/S0009-2541(99)00083-2
  12. Isaacson P. E., Díaz-Martínez E., Grader G. W., Kalvoda J., Babek O., Devuyst F. X. (2008) Late Devonian–earliest Mississippian glaciation in Gondwanaland and its biogeographic consequences. Palaeogeogr., Palaeoclimaol., Palaeoecol., 268, 126-142.
  13. Kaiser S. I., Steuber T., Becker R. T. (2008) Environmental change during the Late Famennian and Early Tournaisian (Late Devonian – Early Carboniferous) – implications from stable isotopes and conodont biofacies in southern Europe. Geol. J. Spec. Iss., 43 (2-3) – Carbonife rous platforms and basins. (Ed. by M. Aretz, H. G. Herbig, I. D. Somerville), 241-260.
  14. Kaiser S. I., Steuber T., Becker R. T., Joachimski M. M. (2006) Geochemical evidence for major environmental change at the Devonian–Carboniferous boundary in the Carnic Alps and the Rhenish Massif. Palaeogeogr., Palaeoclimatol., Palaeoecol., 240, 146-160.
  15. Pisarzowska A., Racki G. (2020) Comparative carbon isotope chemostratigraphy of major Late Devonian biotic crises. Stratigr. Timesc., 5, 387-466. doi: 10.1016/bs.sats.2020.08.001
  16. Qie W., Wang X.-D., Zhang X., Ji W., Grossman E. L., Huang X., Liu J., Luo G. (2016) Latest Devonian to earliest Carboniferous conodont and carbon isotope stratigraphy of a shallow-water sequence in South China. Geol. J., 51, 915-935.
  17. Racki G., Mazur S., Narkiewicz K., Pisarzowska A., Bardziński W., Kołtonik K., Szymanowski D., Filipiak P., Kremer B. (2022) A waning Saxothuringian Ocean evidenced in the Famennian tephra-bearing siliceous succession of the Bardo Unit (Central Sudetes, SW Poland). GSA Bull., 134 (9-10), 2373-2398. doi: 10.1130/B35971.1
  18. Romanek C. S., Grossman E. L., Morse J. W. (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochim. Cosmochim. Acta, 56(1), 419-430. doi: 10.1016/0016-7037(92)90142-6
  19. Saltzman M. R. (2005) Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology, 33 (7), 573-576. doi: 10.1130/G21535.1
  20. Saltzman M. R., Thomas E. (2012) Carbon isotope stratigraphy. The Geologic Time Scale 2012. (Ed. by F. M. Gradstein, J. G. Ogg, M. Schmitz, G. Ogg). Amsterdam: Elsevier, 207-232. doi: 10.1016/B978-0-444-59425-9.00011-1
  21. Schlager W., Reijmer J. J. G., Droxler A. (1994) Highstand shedding of carbonate platforms. J. Sediment. Res., 64 (3), 270-281. URL: https://www.researchgate.net/publication/237130554_Highstand_Shedding_of_Carbonate_Platforms
  22. Scotese C. R., Song H., Mills B. J. W., van der Meer D. G. (2021) Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Sci. Rev., 215, 103503. doi: 10.1016/j.earscirev.2021.103503
  23. Sisma-Ventura G., Tütken T., Peters S. T. M., Bialik O. M., Zohar I., Pack A. (2019) Past aquatic environments in the Levant inferred from stable isotope compositions of carbonate and phosphate in fish teeth. PLoS ONE, 14 (7), e0220390. doi: 10.1371/journal.pone.0220390
  24. Spalletta C., Perri M. C., Over D. J., Corradini C. (2017) Famennian (Upper Devonian) conodont zonation: revised global standard. Bull. Geosci., 92 (1), 31-57. doi: 10.3140/bull.geosci.1623
  25. Starikova E. V., Kuleshov V. N. (2016) Isotopic composition (δ13C and δ18O) and genesis of carbonates from the Famennian manganiferous formation of Pai-Khoi. Lithol. Miner. Res., 51, 195-213.
  26. Vennemann T. W., Hegner E., Cliff G., Benz G. W. (2001) Isotopic composition of recent shark teeth as a proxy for environmental conditions. Geochim. Cosmochim. Acta, 65, 1583-1599.
  27. Yoshioka T. (1997) Phytoplanktonic carbon isotope fractionation: equations accounting for CO2-concentrating mechanisms. J. Plankton Res., 19 (10), 1455-1476.
  28. Zhang X., Joachimski M. M., Over D. J., Ma K., Huang C., Gong Y. (2019) Late Devonian carbon isotope chemostratigraphy: A new record from the offshore facies of South China. Global Planet. Change, 182, 103024. doi: 10.1016/j.gloplacha.2019.103024
  29. Zhuravlev A. V. (2020) Trophic position of some Late Devonian-Carboniferous (Mississippian) conodonts revealed on carbon organic matter isotope signatures: a case study of the East European basin. Geodiversitas, 42 (24), 443-453. doi: 10.5252/geodiversitas2020v42a24
  30. Zhuravlev A. V., Plotitsyn A. N., Gruzdev D. A., Smoleva I. V. (2020) Carbon isotope stratigraphy of the Tournaisian (Lower Mississippian) successions of NE Europe. Stratigr. Timesc., 5, 467-527. doi: 10.1016/bs.sats.2020.08.007
  31. Ziegler W., Sandberg C. A. (1990) The Late Devonian standard conodont zonation. Courier Forschungs Institute Senkenberg, (121), 115 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Gruzdev D.A., Zhuravlev A.V., Vevel Y.A., Erofeevsky A.V., Smoleva I.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).