Переменные электромагнитные поля в физиотерапии заболеваний опорно-двигательного аппарата

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Всё больше данных свидетельствует о том, что экзогенное электромагнитное поле может быть вовлечено во многие биологические процессы, имеющие большое значение для терапевтических вмешательств.

Известно, что переменные электромагнитные поля являются неинвазивным, безопасным и эффективным терапевтическим средством без явных побочных эффектов. Многочисленные исследования показали, что переменные электромагнитные поля могут стать самостоятельным или дополнительным методом лечения заболеваний опорно-двигательного аппарата. Однако несколько вопросов остаются нерешёнными. До широкого клинического применения переменных электромагнитных полей в физиотерапии необходимы дальнейшие хорошо спланированные высококачественные исследования для стандартизации параметров лечения и выработки оптимального протокола с целью принятия решений в области здравоохранения.

В обзоре представлены современные сведения о механизме действия, клиническом применении и противоречиях в отношении переменных электромагнитных полей в физиотерапии заболеваний опорно-двигательного аппарата.

Об авторах

Юрий Юльевич Бяловский

Рязанский государственный медицинский университет имени академика И.П. Павлова

Автор, ответственный за переписку.
Email: b_uu@mail.ru
ORCID iD: 0000-0002-6769-8277
SPIN-код: 6389-6643

д-р мед. наук, профессор

Россия, Рязань

Алексей Валерьевич Иванов

Елатомский приборный завод

Email: ivanov@elamed.com
ORCID iD: 0000-0001-5961-892X
SPIN-код: 4597-8537
Россия, Елатьма

Ирина Сергеевна Ракитина

Рязанский государственный медицинский университет имени академика И.П. Павлова

Email: rakitina62@gmail.com
ORCID iD: 0000-0002-9406-1765
SPIN-код: 8427-9471

канд. мед. наук, доцент

Россия, Рязань

Список литературы

  1. Markov M.S. Pulsed electromagnetic field therapy history, state of the art and future // Environmentalist. 2007. Vol. 27, N 4. Р. 465–475. doi: 10.1007/s10669-007-9128-2
  2. The classic: Fundamental aspects of fracture treatment by Iwao Yasuda, reprinted from J. Kyoto Med. Soc., 4:395–406, 1953 // Clin Orthop Relat Res. 1977. Vol. 124. P. 5–8.
  3. Victoria G., Petrisor B., Drew B., Dick D. Bone stimulation for fracture healing: What’s all the fuss? // Indian J Orthop. 2009. Vol. 43, N 2. Р. 117–120. doi: 10.4103/0019-5413.50844
  4. Brighton C.T., Friedenberg Z.B., Mitchell E.I., Booth R.E. Treatment of nonunion with constant direct current // Clin Orthop Relat Res. 1977. N 124. Р. 106–123.
  5. Dealler S.F. Electrical phenomena associated with bones and fractures and the therapeutic use of electricity in fracture healing // J Med Eng Technol. 1981. Vol. 5, N 2. Р. 73–79. doi: 10.3109/03091908109042442
  6. Ciombor D.M., Aaron R.K. The role of electrical stimulation in bone repair // Foot Ankle Clin. 2005. Vol. 10, N 4. Р. 579–593, vii. doi: 10.1016/j.fcl.2005.06.006
  7. Waldorff E.I., Zhang N., Ryaby J.T. Pulsed electromagnetic field applications: A corporate perspective // J Orthop Translat. 2017. N 9. Р. 60–68. doi: 10.1016/j.jot.2017.02.006
  8. Bassett C.A., Pawluk R.J., Becker R.O. Effects of electric currents on bone in vivo // Nature. 2004. N 204. Р. 652–654. doi: 10.1038/204652a0
  9. Bassett C.A., Pilla A.A., Pawluk R.J. A non-operative salvage of surgically-resistant pseudarthroses and non-unions by pulsing electromagnetic fields. A preliminary report // Clin Orthop Relat Res. 1977. N 124. Р. 128–143.
  10. Daish C., Blanchard R., Fox K., et al. The application of Pulsed Electromagnetic Fields (PEMFs) for bone fracture repair: Past and perspective findings // Ann Biomed Eng. 2018. Vol. 46, N 4. Р. 525–542. doi: 10.1007/s10439-018-1982-1
  11. Adie S., Harris I.A., Naylor J.M., et al. Pulsed electromagnetic field stimulation for acute tibial shaft fractures: A multicenter, double-blind, randomized trial // J Bone Joint Surg Am. 2011. Vol. 93, N 17. Р. 1569–1576. doi: 10.2106/JBJS.J.00869
  12. Bassett C.A., Mitchell S.N., Gaston S.R. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields // J Bone J Surg Am. 1981. Vol. 63, N 4. Р. 511–523.
  13. Androjna C., Fort B., Zborowski M., Midura R.J. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture // Bioelectromagnetics. 2014. Vol. 35, N 6. Р. 396–405. doi: 10.1002/bem.21855
  14. Bassett C.A. Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs) // Crit Rev Biomed Eng. 1989. Vol. 17, N 5. Р. 451–529.
  15. Juutilainen J., Lang S. Genotoxic, carcinogenic and teratogenic effects of electromagnetic fields. Introduction and overview // Mutat Res. 1997. Vol. 387, N 3. Р. 165–171. doi: 10.1016/s1383-5742(97)00036-7
  16. Rubik B. Bioelectromagnetics & the future of medicine // Adm Radiol J. 1997. Vol. 16, N 8. Р. 38–46.
  17. Pasek J., Pasek T., Sieron-Stoltny K., et al. Electromagnetic fields in medicine — the state of art // Electromagn Biol Med. 2016. Vol. 35, N 2. Р. 170–175. doi: 10.3109/15368378.2015.1048549
  18. Markov M.S. Expanding use of pulsed electromagnetic field therapies // Electromagn Biol Med. 2007. Vol. 26, N 3. Р. 257–274. doi: 10.1080/15368370701580806
  19. Bachl N., Ruoff G., Wessner B., Tschan H. Electromagnetic interventions in musculoskeletal disorders // Clin Sports Med. 2008. Vol. 27, N 1. Р. 87–105, viii. doi: 10.1016/j.csm.2007.10.006
  20. Elshiwi A.M., Hamada H.A., Mosaad D., et al. Effect of pulsed electromagnetic field on nonspecific low back pain patients: A randomized controlled trial // Braz J Phys Ther. 2019. Vol. 23, N 3. Р. 244–249. doi: 10.1016/j.bjpt.2018.08.004
  21. Assiotis A., Sachinis N.P., Chalidis B.E. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature // J Orthop Surg Res. 2012. N 7. Р. 24. doi: 10.1186/1749-799X-7-24
  22. Shi H., Xiong J., Chen Y., et al. Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: A prospective randomized controlled study // BMC Musculoskelet Disord. 2013. N 14. Р. 35. doi: 10.1186/1471-2474-14-35
  23. Liu I.F., He H.C., Yang L., et al. Pulsed electromagnetic fields for postmenopausal osteoporosis and concomitant lumbar osteoarthritis in southwest China using proximal femur bone mineral density as the primary endpoint: Study protocol for a randomized controlled trial // Trials. 2015. N 16. Р. 265. doi: 10.1186/s13063-015-0780-4
  24. Ryang S., Koog Y.H., Jeong K.I., Wi H. Effects of pulsed electromagnetic field on knee osteoarthritis: A systematic review // Rheumatology. 2013. Vol. 52, N 5. Р. 815–824. doi: 10.1093/rheumatology/kes063
  25. Yang X., He H., Zhou Y., et al. Pulsed electromagnetic field at different stages of knee osteoarthritis in rats induced by low-dose monosodium iodoacetate: Effect on subchondral trabe cular bone microarchitecture and cartilage degradation // Bioelectromagnetics. 2017. Vol. 38, N 3. Р. 227–238. doi: 10.1002/bem.22028
  26. Wang T., Xie W., Ye W., He C. Effects of electromagnetic fields on osteoarthritis // Biomed Pharmacother. 2019. N 118. Р. 109–282. doi: 10.1016/j.biopha.2019.109282
  27. Wang T., Yang L., Jiang J., et al. Pulsed electromagnetic fields: Promising treatment for osteoporosis // Osteoporos Int. 2019. Vol. 30, N 2. Р. 267–276. doi: 10.1007/s00198-018-04822-6
  28. Wang Y.Y., Pu X.Y., Shi W.G., et al. Pulsed electromagnetic fields promote bone formation by activating the sAC-cAMP-PKA-CREB signaling pathway // J Cell Physiol. 2019. Vol. 234, N 3. Р. 2807–2821. doi: 10.1002/jcp.27098
  29. Aaron R.K., Boyan B.D., Ciombor D.M., et al. Stimulation of growth factor synthesis by electric and electromagnetic fields // Clin Orthop Relat Res. 2004. N 419. Р. 30–37. doi: 10.1097/00003086-200402000-00006
  30. Goto T., Fujioka M., Ishida M., Kuribayashi M. Noninvasive up-regulation of angiopoietin-2 and fibroblast growth factor-2 in bone marrow by pulsed electromagnetic field therapy // J Orthop Sci. 2010. Vol. 15, N 5. Р. 661–665. doi: 10.1007/s00776-010-1510-0
  31. Zhou J., He H., Yang L., Chen S. Effects of pulsed electromagnetic fields on bone mass and Wnt/beta-catenin signaling pathway in ovariectomized rats // Arch Med Res. 2012. Vol. 43, N 4. Р. 274–282. doi: 10.1016/j.arcmed.2012.06.002
  32. Jing D., Zhai M., Tong S., Xu F. Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/beta-catenin signaling-associated mechanism // Sci Rep. 2016. N 6. Р. 32–45. doi: 10.1038/srep32045
  33. Tong J., Sun L., Zhu B., et al. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients // Bioelectromagnetics. 2017. Vol. 38, N 7. Р. 541–549. doi: 10.1002/bem.22076
  34. De Mattei M., Pasello M., Pellati A., et al. Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants // Connect Tissue Res. 2003. Vol. 44, N 3-4. Р. 154–159.
  35. Vicenti G., Bizzoca D., Nappi V.S., et al. Biophysical stimulation of the knee with PEMFs: From bench to bedside // J Biol Regul Homeost Agents. 2018. Vol. 32, N 6, Suppl. 1. Р. 23–28.
  36. Brighton C.T., McCluskey W.P. Response of cultured bone cells to a capacitively coupled electric field: Inhibition of cAMP response to parathyroid hormone // J Orthop Res. 1988. Vol. 6, N 4. Р. 567–571. doi: 10.1002/jor.1100060414
  37. Hiraki Y., Endo N., Takigawa M., Asada A. Enhanced responsiveness to parathyroid hormone and induction of functional differentiation of cultured rabbit costal chondrocytes by a pulsed electromagnetic field // Biochim Biophys Acta. 1987. Vol. 931, N 1. Р. 94–100. doi: 10.1016/0167-4889(87)90054-1
  38. Cain C.D., Adey W.R., Luben R.A. Evidence that pulsed electromagnetic fields inhibit coupling of adenylate cyclase by parathyroid hormone in bone cells // J Bone Miner Res. 1987. Vol. 2, N 5. Р. 437–141. doi: 10.1002/jbmr.5650020511
  39. Luben R.A., Cain C.D., Chen M.C., et al. Effects of electromagnetic stimuli on bone and bone cells in vitro: Inhibition of responses to parathyroid hormone by low-energy low frequency fields // Proc Natl Acad Sci. U.S.A. 1982. Vol. 79, N 13. Р. 4180–4184. doi: 10.1073/pnas.79.13.4180
  40. Bourguignon G.J., Jy W., Bourguignon L.Y. Electric stimulation of human fibroblasts causes an increase in Ca2+ influx and the exposure of additional insulin receptors // J Cell Physiol. 1989. Vol. 140, N 2. Р. 379–385. doi: 10.1002/jcp.1041400224
  41. Cossarizza A., Monti D., Bersani F., et al. Extremely low frequency pulsed electromagnetic fields increase interleukin-2 (IL-2) utilization and IL-2 receptor expression in mitogen-stimulated human lymphocytes from old subjects // FEBS Lett. 1989. Vol. 248, N 1. Р. 141–144. doi: 10.1016/0014-5793(89)80449-1
  42. Fitzsimmons R.J., Ryaby J.T., Magee F.P., Baylink D.J. IGF-II receptor number is increased in TE-85 osteosarcoma cells by combined magnetic fields // J Bone Miner Res. 1995. Vol. 10, N 5. Р. 812–819. doi: 10.1002/jbmr.5650100519
  43. Cho M.R., Thatte H.S., Lee R.C., Golan D.E. Induced redistribution of cell surface receptors by alternating current electric fields // FASEB J. 1994. Vol. 8, N 10. Р. 771–776. doi: 10.1096/fasebj.8.10.8050677
  44. Shankar V.S., Simon B.J., Bax C.M., et al. Effects of electromagnetic stimulation on the functional responsiveness of isolated rat osteoclasts // J Cell Physiol. 1998. Vol. 176, N 3. 537–544. doi: 10.1002/(SICI)1097-4652(199809)176:3<537::AID-JCP10>3.0.CO;2-X
  45. Varani K., Gessi S., Merighi V. Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils // Br J Pharmacol. 2002. Vol. 136, N 1. Р. 57–66. doi: 10.1038/sj.bjp.0704695
  46. Varani K., Vinccnzi F., Ravani A., et al. Adenosine receptors as a biological pathway for the anti-inflammatory and beneficial effects of low frequency low energy pulsed electromagnetic fields // Mediators Inflamm. 2017. N 2017. Р. 2740963. doi: 10.1155/2017/2740963
  47. Vincenzi F., Targa M., Corciulo C., Gessi S. Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and Аз adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts // PLoS One. 2013. Vol. 8, N 5. e65561. doi: 10.1371/journal.pone.0065561
  48. Yuan J., Xin F., Jiang W. Underlying signaling pathways and therapeutic applications of pulsed electromagnetic fields in bone repair // Cell Physiol Biochem. 2018. Vol. 46, N 4. Р. 1581–1594. doi: 10.1159/000489206
  49. Miyamoto H., Sawaji Y., Iwaki T., Masaoka T. Intermittent pulsed electromagnetic field stimulation activates the mTOR pathway and stimulates the proliferation of osteoblast-like cells // Bioelectromagnetics. 2019. Vol. 40, N 6. Р. 412–421. doi: 10.1002/bem.22207
  50. Fitzsimmons R.J., Strong D.D., Mohan S., Baylink D.J. Low-amplitude, low-frequency electric field-stimulated bone cell proli feration may in part be mediated by increased IGF-II release // J Cell Physiol. 1992. Vol. 150, N 1. Р. 84–89. doi: 10.1002/jcp.1041500112
  51. Nagai M., Ota M. Pulsating electromagnetic field stimulates mRNA expression of bone morphogenetic protein-2 and -4 // J Dent Res. 1994. Vol. 73, N 10. Р. 1601–1605. doi: 10.1177/00220345940730100401
  52. Aaron R.K., Wang S., Ciombor D.M. Upregulation of basal TGFbeta levels by EMF coincident with chondrogenesis-implications for skeletal repair and tissue engineering // J Orthop Res. 2002. Vol. 20, N 2. Р. 233–240. doi: 10.1016/S0736-0266(01)00084-5
  53. Lohmann C.H., Schwartz Z., Liu Y., et al. Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells // J Orthop Res. 2003. Vol. 21, N 2. Р. 326–334. doi: 10.1016/S0736-0266(02)00137-7
  54. Holmes D. Non-union bone fracture: A quicker fix // Nature. 2017. Vol. 550, N 7677. Р. 193. doi: 10.1038/550S193a
  55. Schottel P.C., O’Connor D.P., Brinker M.R. Time trade-off as a measure of health-related quality of life: Long bone nonunions have a deva stating impact // J Bone J Surg Am. 2015. Vol. 97, N 17. Р. 1406–1410. doi: 10.2106/JBJS.N.01090
  56. Peters R.M., Claessen F.M., Doornberg J.N., et al. Union rate after operative treatment of humeral shaft nonunion: A systematic review // Injury. 2015. Vol. 46, N 12. Р. 2314–2324. doi: 10.1016/j.injury.2015.09.041
  57. El Haj M., Khoury A., Mosheiff R., et al. Orthogonal double plate fixation for long bone fracture nonunion // Acta Chir Orthop Traumatol Cech. 2013. Vol. 80, N 2. Р. 131–137.
  58. Shi H.F., Xiong J., Chen Y.X., et al. Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: A prospective randomized controlled study // BMC Musculoskelet Disord. 2013. N 14. Р. 35. doi: 10.1186/1471-2474-14-35
  59. Murray H.B., Pethica B.A. A follow-up study of the in-practice results of pulsed electromagnetic field therapy in the management of nonunion fractures // Orthop Res Rev. 2016. N 8. Р. 67–72. doi: 10.2147/ORR.S113756
  60. Adams B.D., Frykman G.K., Taleisnik J. Treatment of scaphoid nonunion with casting and pulsed electromagnetic fields: A study continuation // J Hand Surg Am. 1992. Vol. 17, N 5. Р. 910–914. doi: 10.1016/0363-5023(92)90467-4
  61. Bassett C.A., Mitchell S.N., Schink M.M. Treatment of therapeutically resistant non-unions with bone grafts and pulsing electromagnetic fields // J Bone J Surg Am. 1982. Vol. 64, N 8. Р. 1214–1220.
  62. Bassett C.A., Mitchell S.N., Gaston S.R. Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses // JAMA. 1982. Vol. 247, N 5. Р. 623–628.
  63. Dunn A.W., Rush G.A. Electrical stimulation in treatment of delayed union and nonunion of fractures and osteotomies // South Med J. 1984. Vol. 77, N 12. Р. 1530–1534. doi: 10.1097/00007611-198412000-00013
  64. Frykman G.K., Taleisnik J., Peters G. Treatment of nonunited scaphoid fractures by pulsed electromagnetic field and cast // J Hand Surg. 1986. Vol. 11, N 3. Р. 344–349. doi: 10.1016/s0363-5023(86)80140-x
  65. Marcer M., Musatti G., Bassett C.A. Results of pulsed electromagnetic fields (РEMFs) in ununited fractures after external skeletal fixation // Clin Orthop Relat Res. 1984. N 190. Р. 260–265.
  66. Meskens M.W., Stuyck J.A., Feys H., Mulier J.C. Treatment of nonunion using pulsed electromagnetic fields: A retrospective follow-up study // Acta Orthop Belg. 1990. Vol. 56, N 2. Р. 483–488.
  67. Sharrard W.J. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures // J Bone J Surg Br. 1990. Vol. 72, N 3. 347–355. doi: 10.1302/0301-620X.72B3.2187877
  68. Sharrard W.J., Sutcliffe M.L., Robson M.J., Maceachern A.G. The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation // J Bone J Surg. 1982. Vol. 64, N 2. Р. 189–193. doi: 10.1302/0301-620X.64B2.6978339
  69. Holmes G.B. Treatment of delayed unions and nonunions of the proximal fifth metatarsal with pulsed electromagnetic fields // Foot Ankle Int. 1994. Vol. 15, N 10. Р. 552–556. doi: 10.1177/107110079401501006
  70. Tepper O.M., Callaghan M.J., Chang E.I., Galiano R.D. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2 // FASEB J. 2004. Vol. 18, N 11. Р. 1231–1233. doi: 10.1096/fj.03-0847fje
  71. Streit A., Watson B.C., Granata J.D., et al. Effect on clinical outcome and growth factor synthesis with adjunctive use of pulsed electromagnetic fields for fifth metatarsal nonunion fracture: A doubleblind randomized study // Foot Ankle Int. 2016. Vol. 37, N 9. Р. 919–923. doi: 10.1177/1071100716652621
  72. De Haas W.G., Beaupre A., Cameron H., English E. The Canadian experience with pulsed magnetic fields in the treatment of ununited tibial fractures // Clin Orthop Relat Res. 1986. N 208. Р. 55–58.
  73. Simonis R.B., Parnell E.J., Ray P.S., Peacock J.L. Electrical treatment of tibial non-union: A prospective, randomised, double-blind trial // Injury. 2003. Vol. 34, N 5. Р. 357–362. doi: 10.1016/s0020-1383(02)00209-7
  74. Barker A.T., Dixon R.A., Sharrard W.J., Sutcliffe M.L. Pulsed magnetic field therapy for tibial non-union. Interim results of a double-blind trial // Lancet. 1984. Vol. 1, N 83. Р. 994–996. doi: 10.1016/s0140-6736(84)92329-8
  75. Meskens M.W., Stuyck J.A., Mulier J.C. Treatment of delayed union and nonunion of the tibia by pulsed electromagnetic fields. A retrospective follow-up // Bull Hosp Dis Orthop Inst. 1988. Vol. 48, N 2. Р. 170–175.
  76. Henderson J.V., Harrison C.M., Britt H.C., et al. Prevalence, causes, severity, impact, and management of chronic pain in Australian general practice patients // Pain Med. 2013. Vol. 14, N 9. Р. 1346–1361. doi: 10.1111/pme.12195
  77. Guccione A.A., Felson D.T., Anderson J.J., et al. The effects of specific medical conditions on the functional limitations of elders in the Framingham Study // Am J Public Health. 1994. Vol. 84, N 3. Р. 351–358. doi: 10.2105/ajph.84.3.351
  78. Cross M., Smith E., Hoy D., et al. The global burden of hip and knee osteoarthritis: Estimates from the global burden of disease 2010 study // Ann Rheum Dis. 2014. Vol. 73, N 7. Р. 1323–1330. doi: 10.1136/annrheumdis-2013-204763
  79. Elders M.J. The increasing impact of arthritis on public health // J Rheumatol Suppl. 2000. N 60. Р. 6–8.
  80. Pavone V., Boettner F., Fickert S., Sculco T.P. Total condylar knee arthroplasty: A long-term followup // Clin Orthop Relat Res. 2001. N 388. Р. 18–25. doi: 10.1097/00003086-200107000-00005
  81. Hochberg M.C., Altman R.D., April K.T., et al. American College of American College of Rheumatology, Recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee // Arthritis Care Res. 2012. Vol. 64, N 4. Р. 465–474. doi: 10.1002/acr.21596
  82. Zhang W., Moskowitz R.W., Nuki G., Abramson S. OARSI recommendations for the management of hip and knee osteoarthritis. Part II: OARSI evidence-based, expert consensus guidelines // Osteoarthr Cartil. 2008. Vol. 16, N 2. Р. 137–162. doi: 10.1016/j.joca.2007.12.013
  83. Lo G.H., Merchant M.G., Driban J.B., et al. Knee alignment is quantitatively related to periarticular bone morphometry and density, especially in patients with osteoarthritis // Arthritis Rheumatol. 2018. Vol. 70, N 2. Р. 212–221. doi: 10.1002/art.40325
  84. Ozguclu E., Cetin A., Cetin M., Calp E. Additional effect of pulsed electromagnetic field therapy on knee osteoarthritis treatment: A randomized, placebo-controlled study // Clin Rheumatol. 2010. Vol. 29, N 8. Р. 927–931. doi: 10.1007/s10067-010-1453-z
  85. McCarthy C., Callaghan M., Oldham J. Pulsed electromagnetic energy treatment offers no clinical benefit in reducing the pain of knee osteoarthritis: A systematic review // BMC Musculoskelet Disord. 2006. N 7. Р. 51. doi: 10.1186/1471-2474-7-51
  86. Thamsborg G., Florescu A., Oturai P., et al. Treatment of knee osteoarthritis with pulsed electromagnetic fields: A randomized, double-blind, placebo-controlled study // Osteoarthr Cartil. 2005. Vol. 13, N 7. Р. 575–581. doi: 10.1016/j.joca.2005.02.012
  87. Wuschech H., von Hehn U., Mikus E., Funk R.H. Effects of pulsing electric field on patients with osteoarthritis: Results of a prospective, placebo-controlled, double-blind study // Bioelectromagnetics. 2015. Vol. 36, N 8. Р. 576–585. doi: 10.1002/bem.21942
  88. Esposito M., Lucariello A., Costanzo C., et al. Differentiation of human umbilical cord-derived mesenchymal stem cells, WJ-MSCs, into chondrogenic cells in the presence of pulsed electromagnetic fields // In Vivo. 2013. Vol. 27, N 4. Р. 495–500.
  89. De Mattei M., Caruso A., Pezzetti F., et al. Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation // Connect Tissue Res. 2001. Vol. 42, N 4. Р. 269–279. doi: 10.3109/03008200109016841
  90. Anbarasan S., Baraneedharan U., Paul S.F., et al. Low dose short duration pulsed electromagnetic field effects on cultured human chondrocytes: An experimental study // Indian J Orthop. 2016. Vol. 50, N 1. Р. 87–93. doi: 10.4103/0019-5413.173522
  91. Fitzsimmons R.J., Gordon S.L., Kronberg J., et al. A pulsing electric field (PEF) increases human chondrocyte proliferation through a transduction pathway involving nitric oxide signaling // J Orthop Res. 2008. Vol. 26, N 6. Р. 854–859. doi: 10.1002/jor.20590
  92. Fini M., Torricelli P., Giavaresi G., et al. Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epyphiseal trabecular bone of aged Dunkin Hartley guinea pigs // Biomed Pharmacother. 2008. Vol. 62, N 10. Р. 709–715. doi: 10.1016/j.biopha.2007.03.001
  93. Ciombor D.M., Aaron R.K., Wang S., Simon B. Modification of osteoarthritis by pulsed electromagnetic field-а morphological study // Osteoarthr Cartil. 2003. Vol. 11, N 6. Р. 455–462. doi: 10.1016/s1063-4584(03)00083-9
  94. Varani K., De Mattei M., Vincenzi F., et al. Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields // Osteoarthr Cartil. 2008. Vol. 16, N 3. Р. 292–304. doi: 10.1016/j.joca.2007.07.004
  95. De Mattei M., Fini M., Setti S., et al. Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields // Osteoarthr Cartil. 2007. Vol. 15, N 2. Р. 163–168. doi: 10.1016/j.joca.2006.06.019
  96. Trock D.H., Bollet A.J., Dyer R.H., et al. A double-blind trial of the clinical effects of pulsed electromagnetic fields in osteoarthritis // J Rheumatol. 1993. Vol. 20, N 3. Р. 456–460.
  97. Trock D.H., Bollet A.J., Markoll R. The effect of pulsed electromagnetic fields in the treatment of osteoarthritis of the knee and cervical spine. Report of randomized, double blind, placebo controlled trials // J Rheumatol. 1994. Vol. 21, N 10. Р. 1903–1911.
  98. Vigano M., Orfei C.P., Ragni E., et al. Pain and functional scores in patients affected by knee OA after treatment with pulsed electromagnetic and magnetic fields: A meta-analysis // Cartilage. 2021. Vol. 13, N 1, Suppl. Р. 1749S–1760S. doi: 10.1177/1947603520931168
  99. Macias I., Alcorta-Sevillano N., Rodriguez C.I., Infante A. Osteoporosis and the potential of cell-based therapeutic strategies // Int J Mol Sci. 2020. Vol. 21, N 5. Р. 1653. doi: 10.3390/ijms21051653
  100. Cummings S.R., Melton L.J. Epidemiology and outcomes of osteoporotic fractures // Lancet. 2002. Vol. 359, N 9319. Р. 1761–1767. doi: 10.1016/S0140-6736(02)08657-9
  101. Watts N.B., Bilezikian J.P., Camacho P.M., et al. American association of clinical endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of postmenopausal osteoporosis // Endocr Pract. 2010. Vol. 16, Suppl 3. Р. 1–37. doi: 10.4158/ep.16.s3.1
  102. Tanaka Y., Ohira T. Mechanisms and therapeutic targets for bone damage in rheumatoid arthritis, in particular the RANK-RANKL system // Curr Opin Pharmacol. 2018. N 40. Р. 110–119. doi: 10.1016/j.coph.2018.03.006
  103. Kanis J.A., Cooper C., Rizzoli R., et al.; Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women // Osteoporos Int. 2019. Vol. 30, N 1. Р. 3–44. doi: 10.1007/s00198-018-4704-5
  104. Compston J., Bowring C., Cooper A., et al. National Osteoporosis Guideline, Diagnosis and management of osteoporosis in postmenopausal women and older men in the UK: National Osteoporosis Guideline Group (NOGG) update 2013 // Maturitas. 2013. Vol. 75, N 4. Р. 392–396. doi: 10.1016/j.maturitas.2013.05.013
  105. Reginster J.Y., Pelousse F., Bruyere O. Safety concerns with the long-term management of osteoporosis // Expert Opin Drug Saf. 2013. Vol. 12, N 4. Р. 507–522. doi: 10.1517/14740338.2013.793669
  106. Chiu W.Y., Lee J.J., Tsai K.S. Atypical femoral fractures shortly after osteonecrosis of the jaw in a postmenopausal woman taking alendronate for osteoporosis // J Clin Endocrinol Metab. 2013. Vol. 98, N 4. E723–726. doi: 10.1210/jc.2012-4144
  107. Anastasilakis A.D., Toulis K.A., Goulis D.G., et al. Efficacy and safety of denosumab in postmenopausal women with osteopenia or osteoporosis: A systematic review and a meta-analysis // Horm Metab Res. 2009. Vol. 41, N 10. Р. 721–729. doi: 10.1055/s-0029-1224109
  108. Papapoulos S., Chapurlat R., Libanati C., et al. Five years of denosumab exposure in women with postmenopausal osteoporosis: Results from the first two years of the FREEDOM extension // J Bone Miner Res. 2012. Vol. 27, N 3. Р. 694–701. doi: 10.1002/jbmr.1479
  109. Body J.J., Bergmann P., Boonen S., et al. Extraskeletal benefits and risks of calcium, vitamin D and anti-osteoporosis medications // Osteoporos Int. 2012. Vol. 23, N 1. Р. l–23. doi: 10.1007/s00198-011-1891-8
  110. Cummings S.R., Schwartz A.V., Black D.M. Alendronate and atrial fibrillation // N Engl J Med. 2007. Vol. 356, N 18. Р. 1895–1896. doi: 10.1056/NEJMc076132
  111. Ettinger B., Burr D.B., Ritchie R.O. Proposed pathogenesis for atypical femoral fractures: Lessons from materials research // Bone. 2013. Vol. 55, N 2. Р. 495–500. doi: 10.1016/j.bone.2013.02.004
  112. Camacho P.M., Petak S.M., et al. American Association of Cli nical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis-2016 // Endocr Pract. 2016. Vol. 22, Suppl 4. Р. 1–12. doi: 10.4158/EP161435.GL
  113. Liu H., Zhou J., Gu L., Zuo Y. The change of HCN1/HCN2 mRNA expression in peripheral nerve after chronic constriction injury induced neuropathy followed by pulsed electromagnetic field therapy // Oncotarget. 2017. Vol. 8, N 1. Р. 1110–1116. doi: 10.18632/oncotarget.13584
  114. Liu H.F., Yang L., He H.C., et al. Pulsed electromagnetic fields on postmenopausal osteoporosis in Southwest China: Arandomized, active-controlled clinical trial // Bioelectromagnetics. 2013. Vol. 34, N 4. Р. 323–332. doi: 10.1002/bem.21770
  115. Huang L.Q., He H.C., He C.Q., et al. Clinical update of pulsed electromagnetic fields on osteoporosis // Chin Med J. 2008. Vol. 121, N 20. Р. 2095–2099.
  116. Spadaro J.A., Short W.H., Sheehe P.R., et al. Electromagnetic effects on forearm disuse osteopenia: A randomized, doubleblind, sham-controlled study // Bioelectromagnetics. 2011. Vol. 32, N 4. Р. 273–282. doi: 10.1002/bem.20632
  117. Roozbeh N., Abdi F., Amraee A., et al. Influence of radiofrequency electromagnetic fields on the fertility system: Protocol for a systematic review and meta-analysis // JMIR Res Protoc. 2018. Vol. 7, N 2. Р. e33. doi: 10.2196/resprot.9102
  118. Giordano N., Battisti E., Geraci S., et al. Effect of electromagnetic fields on bone mineral density and biochemical markers of bone turnover in osteoporosis: A single-blind, randomized pilot study // Curr Ther Res. 2001. Vol. 62, N 3. Р. 187–193. doi: 10.1016/S0011-393X(01)80030-8
  119. Garland D.E., Adkins R.H., Matsuno N.N., Stewart C.A. The effect of pulsed electromagnetic fields on osteoporosis at the knee in individuals with spinal cord injury // J Spinal Cord Med. 1999. Vol. 22, N 4. Р. 239–245. doi: 10.1080/10790268.1999.11719576
  120. Tabrah F.L., Ross P., Hoffmeier M., Gilbert J.F. Clinical report on long-term bone density after short-term EMF application // Bioelectromagnetics. 1998. Vol. 19, N 2. Р. 75–78. doi: 10.1002/(sici)1521-186x(1998)19:2<75::aid-bem3>3.0.co;2-0
  121. Petek D., Hannouche D., Suva D. Osteonecrosis of the femoral head: Pathophysiology and current concepts of treatment // EFORT Open Rev. 2019. Vol. 4, N 3. Р. 85–97. doi: 10.1302/2058-5241.4.180036
  122. Leo M., Milena F., Ruggero C., et al. Biophysical stimulation in osteonecrosis of the femoral head // Indian J Orthop. 2009. Vol. 43, N 1. Р. 17–21. doi: 10.4103/0019-5413.45319
  123. Mont M.A., Jones L.C., Hungerford D.S. Nontraumatic osteonecrosis of the femoral head: Ten years later // J Bone J Surg. 2006. Vol. 88, N 5. Р. 1117–1132. doi: 10.2106/JBJS.E.01041
  124. Kubo T., Ueshima K., Saito M., et al. Clinical and basic research on steroid-induced osteonecrosis of the femoral head in Japan // J Orthop Sci. 2016. Vol. 21, N 4. Р. 407–413. doi: 10.1016/j.jos.2016.03.008
  125. Gangji V., Hauzeur J.P., Matos C., et al. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study // J Bone J Surg. 2004. Vol. 86, N 6. Р. 1153–1160. doi: 10.2106/00004623-200406000-00006
  126. Korompilias A.V., Beris A.E., Lykissas M.G., et al. Femoral head osteonecrosis: Why choose free vascularized fibula grafting // Microsurgery. 2011. Vol. 31, N 3. Р. 223–228. doi: 10.1002/micr.20837
  127. Keizer S.B., Kock N.B., Dijkstra P.D., et al. Treatment of avascular necrosis of the hip by a non-vascularised cortical graft // J Bone Joint Surg Br. 2006. Vol. 88, N 4. Р. 460–466. doi: 10.1302/0301-620X.88B4.16950
  128. Shannon B.D., Trousdale R.T. Femoral osteotomies for avascular necrosis of the femoral head // Clin Orthop Relat Res. 2004. N 4. Р. 34–40. doi: 10.1097/00003086-200401000-00007
  129. Siguier T., Siguier M., Judet T., et al. Partial resurfacing arthroplasty of the femoral head in avascular necrosis. Methods, indications, and results // Clin Orthop Relat Res. 2001. N 38. Р. 85–92. doi: 10.1097/00003086-200105000-00011
  130. Ding S., Peng H., Fang H.S., et al. Pulsed electromagnetic fields stimulation prevents steroid-induced osteonecrosis in rats // BMC Musculoskelet Disord. 2011. N 12. Р. 215. doi: 10.1186/1471-2474-12-215
  131. Ishida M., Fujioka M., Takahashi K.A., et al. Electromagnetic fields: A novel prophylaxis for steroid-induced osteonecrosis // Clin Orthop Relat Res. 2008. Vol. 466, N 5. Р. 1068–1073. doi: 10.1007/s11999-008-0182-y
  132. Massari L., Fini M., Cadossi R., et al. Biophysical stimulation with pulsed electromagnetic fields in osteonecrosis of the femoral head // J Bone Jt Surg Am. 2006. Vol. 88, Suppl 3. Р. 56–60. doi: 10.2106/JBJS.F.00536
  133. Bassett C.A., Schink-Ascani M., Lewis S.M. Effects of pulsed electromagnetic fields on Steinberg ratings of femoral head osteonecrosis // Clin Orthop Relat Res. 1989. N 2. Р. 172–185.
  134. Muccioli G.M., Grassi A., Setti S., et al. Conservative treatment of spontaneous osteonecrosis of the knee in the early stage: Pulsed electromagnetic fields therapy // Eur J Radiol. 2013. Vol. 82, N 3. Р. 530–537. doi: 10.1016/j.ejrad.2012.11.011
  135. Ikegami A., Ueshima K., Saito M., et al. Femoral perfusion after pulsed lectromagnetic field stimulation in a steroid-induced osteonecrosis model // Bioelectromagnetics. 2015. Vol. 36, N 5. Р. 349–357. doi: 10.1002/bem.21910
  136. Rosso F., Bonasia D.E., Marmotti A., et al. Mechanical stimulation (pulsed electromagnetic fields PEMP and extracorporeal shock wave therapy ESWT) and tendon regeneration: A possible alternative // Front Aging Neurosci. 2015. N 7. Р. 211. doi: 10.3389/fnagi.2015.00211
  137. Andres B.M., Murrell G.A. Treatment of tendinopathy: What works, what does not, and what is on the horizon // Clin Orthop Relat Res. 2008. Vol. 466, N 7. Р. 1539–1554. doi: 10.1007/s11999-008-0260-1
  138. Tempfer H., Lehner C., Griitz M., et al. Biological augmentation for tendon repair: Lessons to be learned from development, disease, and tendon // Stem Cell Res. 2017. N 1. Р. 1–31. doi: 10.1007/978-3-319-08831-0_54
  139. Gehwolf R., Schwemberger B., Jessen M., et al. Global responses of IL-ip-primed 3D tendon constructs to treatment with pulsed electromagnetic fields // Cells. 2019. Vol. 8. N 5. Р. 399. doi: 10.3390/cells8050399
  140. Abate M., Silbernagel K.G., Siljeholm C., et al. Pathogenesis of tendinopathies: inflammation or degeneration // Arthritis Res Ther. 2009. Vol. 11, N 3. Р. 235. doi: 10.1186/ar2723
  141. Millar N.L., Murrell G.A., Mclnnes I.B. Inflammatory mechanisms in tendinopathy — towards translation // Nat Rev Rheumatol. 2017. Vol. 13, N 2. Р. 110–122. doi: 10.1038/nrrheum.2016.213
  142. Dean B.J., Gettings P., Dakin S.G., Carr A.J. Are inflammatory cells increased in painful human tendinopathy. A systematic review // Br J Sports Med. 2016. Vol. 50, N 4. Р. 216–220. doi: 10.1136/bjsports-2015-094754
  143. Schulze-Tanzil G., Al-Sadi O., Wiegand E., et al. The role of pro-inflammatory and immunoregulatory cytokines in tendon healing and rupture: New insights // Scand J Med Sci Sports. 2011. Vol. 21, N 3. Р. 337–351. doi: 10.1111/j.1600-0838.2010.01265.x
  144. Benazzo F., Cadossi M., Cavani F., et al. Cartilage repair with osteochondral autografts in sheep: Effect of biophysical stimulation with pulsed electromagnetic fields // J Orthop Res. 2008. Vol. 26, N 5. Р. 631–642. doi: 10.1002/jor.20530
  145. Osti L., Buono A.D., Maffulli N. Pulsed electromagnetic fields after rotator cuff repair: A randomized, controlled study // Orthopedics. 2015. Vol. 38, N 3. Р. e223–228. doi: 10.3928/01477447-20150305-61
  146. De Girolamo L., Vigano M., Galliera E., et al. In vitro functional response of human tendon cells to different dosages of low-frequency pulsed electromagnetic field // Knee Surg Sport Traumatol Arthrosc. 2015. Vol. 23, N 11. Р. 3443–3453. doi: 10.1007/s00167-014-3143-x
  147. De Girolamo L., Stanco D., Galliera E., et al. Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells // Cell Biochem Biophys. 2013. Vol. 66, N 3. Р. 697–708. doi: 10.1007/s12013-013-9514-y
  148. Liu M., Lee C., Laron D., et al. Role of pulsed electromagnetic fields on tenocytes and myoblasts- potcntial application for treating rotator cuff tears // J Orthop Res. 2017. Vol. 35, N 5. Р. 956–964. doi: 10.1002/jor.23278
  149. Marmotti A., Peretti G.M., Mattia S., et al. Pulsed electromagnetic fields improve tenogenic commitment of umbilical cord-derived mesenchymal stem cells: A potential strategy for tendon repair-an in vitro study // Stem Cells Int. 2018. N 9048237. doi: 10.1155/2018/9048237
  150. Randelli P., Menon A., Ragone V., et al. Effects of the pulsed electromagnetic field PST® on human tendon stem cells: A controlled laboratory study // BMC Complement Altern Med. 2016. N 16. Р. 293. doi: 10.1186/s12906-016-1261-3
  151. Uzunca K., Birtane M., Tastekin N. Effectiveness of pulsed electromagnetic field therapy in lateral epicondylitis // Clin Rheumatol. 2007. Vol. 26, N 1. Р. 69–74. doi: 10.1007/s10067-006-0247-9
  152. Devereaux M.D., Hazleman B.L., Thomas P.P. Chronic lateral humeral epicondylitis-a double-blind controlled assessment of pulsed electromagnetic field therapy // Clin Exp Rheumatol. 1985. Vol. 3, N 4. Р. 333–336.
  153. Sutbeyaz S.T., Sezer N., Koseoglu F., Kibar S. Low-frequency pulsed electromagnetic field therapy in fibromyalgia: A randomized, double-blind, sham- controlled clinical study // Clin J Pain. 2009. Vol. 25, N 8. Р. 722–728. doi: 10.1097/AJP.0b013e3181a68a6c
  154. Maestu C., Blanco M., Nevado A., et al. Reduction of pain thresholds in fibromyalgia after very low-intensity magnetic stimulation: A double-blinded, randomized placebo-controlled clinical trial // Pain Res Manag. 2013. Vol. 18, N 6. Р. el01–106. doi: 10.1155/2013/270183
  155. Lee H.M., Kwon U.H., Kim H., et al. Pulsed electromagnetic field stimulates cellular proliferation in human intervertebral disc cells // Yonsei Med J. 2010. Vol. 51, N 6. Р. 954–959. doi: 10.3349/ymj.2010.51.6.954
  156. Miller S.L., Coughlin D.G., Waldorff E.I., et al. Pulsed electromagnetic field (PEMP) treatment reduces expression of genes associated with disc degeneration in human intervertebral disc cells // Spine J. 2016. Vol. 16, N 6. Р. 770–776. doi: 10.1016/j.spinee.2016.01.003
  157. Hattapoglu E., Batmaz I., Dilek B., et al. Efficiency of pulsed electromagnetic fields on pain, disability, anxiety, depression, and quality of life in patients with cervical disc herniation: A randomized controlled study // Turk J Med Sci. 2019. Vol. 49, N 4. Р. 1095–1101. doi: 10.3906/sag-1901-65
  158. Thomas A.W., Graham K., Prato F.S., et al. A randomized, double-blind, placebo-controlled clinical trial using a low-frequency magnetic field in the treatment of musculoskeletal chronic pain // Pain Res Manag. 2007. Vol. 12, N 4. Р. 249–258. doi: 10.1155/2007/626072
  159. Seo N., Lee S.H., Ju K.W., et al. Low-frequency pulsed electromagnetic field pretreated bone marrow-derived mesenchymal stem cells promote the regeneration of crush-injured rat mental nerve // Neural Regen Res. 2018. Vol. 13, N 1. Р. 145–153. doi: 10.4103/1673-5374.224383
  160. Zhu S., Ge J., Liu Z., et al. Circadian rhythm influences the promoting role of pulsed electromagnetic fields on sciatic nerve regeneration in rats // Front Neurol. 2017. N 8. Р. 101. doi: 10.3389/fneur.2017.00101
  161. Zhou J., Liao Y., Xie H., et al. Pulsed electromagnetic field ameliorates cartilage degeneration by inhibiting mitogen-activated protein kinases in a rat model of osteoarthritis // Phys Ther Sport. 2017. N 24. Р. 32–38. doi: 10.1016/j.ptsp.2016.10.003
  162. Nelson F.R., Zvirbulis R., Pilla A.A. Non-invasive electromagnetic field therapy produces rapid and substantial pain reduction in early knee osteoarthritis: A randomized double-blind pilot study // Rheumatol Int. 2013. Vol. 33, N 8. Р. 2169–2173. doi: 10.1007/s00296-012-2366-8
  163. Rutherford G., Lithgow B., Moussavi Z. Transcranial magnetic stimulation safety from operator exposure perspective // Med Biol Eng Comput. 2020. Vol. 58, N 2. Р. 249–256. doi: 10.1007/s11517-019-02084-w
  164. Shuvy M., Abedat S., Beeri R., et al. Electromagnetic fields promote severe and unique vascular calcification in an animal model of ectopic calcification // Exp Toxicol Pathol. 2014. Vol. 66, N 7. Р. 345–350. doi: 10.1016/j.etp.2014.05.001
  165. Schenck J.F., Dumoulin C.L., Redington R.W., et al. Human exposure to 4.0-Tesla magnetic fields in a whole-body scanner // Med Phys. 1992. Vol. 19, N 4. Р. 1089–1098. doi: 10.1118/1.596827
  166. Bailey W.H., Su S.H., Bracken T.D., Kavet R. Summary and evaluation of guidelines for occupational exposure to power frequency electric and magnetic fields // Health Phys. 1997. Vol. 73, N 3. Р. 433–453. doi: 10.1097/00004032-199709000-00002
  167. Van Wijngaarden E., Savitz D.A., Kleckner R.C., et al. Exposure to electromagnetic fields and suicide among electric utility workers: A nested case- control study // West J Med. 2000. Vol. 173, N 2. Р. 94–100. doi: 10.1136/ewjm.173.2.94
  168. Baris D., Armstrong B.G., Deadman J., Theriault G. A case cohort study of suicide in relation to exposure to electric and magnetic fields among electrical utility workers // Occup Environ Med. 1996. Vol. 53, N 1. Р. 17–24. doi: 10.1136/oem.53.1.17
  169. Bailey W.H. Health effects relevant to the setting of EMF exposure limits // Health Phys. 2002. Vol. 83, N 3. Р. 376–386. doi: 10.1097/00004032-200209000-00007
  170. Rossi S., Hallett Rossini A., Pascual-Leone P.M. Safety, ethi cal considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research // Clin Neurophysiol. 2009. Vol. 120, N 12. Р. 2008–2039. doi: 10.1016/j.clinph.2009.08.016
  171. Kheifets L., Ahlbom A., Crespi C.M., et al. Pooled analysis of recent studies on magnetic fields and childhood leukaemia // Br J Cancer. 2010. Vol. 103, N 7. Р. 1128–1135. doi: 10.1038/sj.bjc.6605838
  172. Hosseinabadi B.M., Khanjani N., Mirzaii M., et al. DNA damage from long-term occupational exposure to extremely low frequency electromagnetic fields among power plant workers // Mutat Res. 2019. N 846. Р. 403079. doi: 10.1016/j.mrgentox.2019.07.007
  173. Panagopoulos D.J. Comparing DNA damage induced by mobile telephony and other types of man-made electromagnetic fields // Mutat Res. 2019. N 781. Р. 53–62. doi: 10.1016/j.mrrev.2019.03.003

© ООО "Эко-Вектор", 2022


 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах