General issues of spinal muscular atrophy (scientific review). Etiology, clinical features, approaches in rehabilitation and orthopedic treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Spinal muscular atrophy is a significant medical and social problem and is one of the most common causes of child mortality caused by inherited neuromuscular diseases. The scientific review focuses on etiology, clinical features, as well as approaches in the rehabilitation and orthopedic treatment of patients with spinal muscular atrophy.

AIM: analysis of world literature on aspects of etiology, pathogenesis, clinical manifestations, approaches in rehabilitation and orthopedic treatment of patients with spinal muscular atrophy.

Search for literary sources in open electronic databases PubMed and eLIBRARY for the entire period available in these databases.

Spinal muscular atrophy is a heterogeneous group of hereditary diseases occurring with damage to the motor neurons of the anterior horns of the spinal cord. With predominant clinical signs in the form of muscle weakness, mainly in the lower extremities. Rehabilitation and orthopedic treatment should be carried out with a focus on the musculoskeletal system and related functional disorders

Analysis of various literary sources shows a rapid increase in the number of publications on spinal muscular atrophy, but a large layer of aspects remains that require clarification and more detailed study. A more detailed study of etiological factors, pathogenesis and clinical features of spinal muscular atrophy will allow a more extensive look at the problems of this disease in order to better understand the possible methods of diagnosis and treatment of patients with this pathology.

About the authors

Gennady N. Ponomarenko

Federal Scientific Center of Rehabilitation of the Disabled named after G.A. Albrecht

Email: mathiaslilmons@gmail.com
ORCID iD: 0000-0001-7853-4473
SPIN-code: 8234-7005

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg

Andrey A. Koltsov

Federal Scientific Center of Rehabilitation of the Disabled named after G.A. Albrecht

Email: mathiaslilmons@gmail.com
ORCID iD: 0000-0002-0862-8826
SPIN-code: 2767-3392

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Ivan S. Maltsev

Federal Scientific Center of Rehabilitation of the Disabled named after G.A. Albrecht

Author for correspondence.
Email: mathiaslilmons@gmail.com
Russian Federation, Saint Petersburg

References

  1. Werdnig G. Zwei frühinfantile hereditäre Fälle von progressive Muskelatrophie unter dem Bilde der Dystrophie, aber auf neurotischer Grundlage. Arch Psychiatr Nervenkr. 1891;22:437–480. doi: 10.1007/BF01776636
  2. Arnold ES, Fischbeck KH. Spinal muscular atrophy. Handb Clin Neurol. 2018;148:591–601. doi: 10.1016/B978-0-444-64076-5.00038-7
  3. Hoffmann J. Uеber chronische spinale Muskelatrophie im Kindesalter, auf familiärer Basis. Dtsch Z Nervenheilkd. 1893;3:427–470. doi: 10.1007/BF01668496
  4. Dubowitz V. Ramblings in the history of spinal muscular atrophy. Neuromuscul Disord. 2009;19(1):69–73. doi: 10.1016/j.nmd.2008.10.004
  5. Brzustowicz LM, Lehner T, Castilla LH, et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3. Nature. 1990;344(6266):540–541. doi: 10.1038/344540a0
  6. Lefebvre S, Burglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80(1):155–165. doi: 10.1016/0092-8674(95)90460-3
  7. Emery AE. The nosology of the spinal muscular atrophies. J Med Genet. 1971;8(4):481–495. doi: 10.1136/jmg.8.4.481
  8. Prior TW, Snyder PJ, Rink BD, et al. Newborn and carrier screening for spinal muscular atrophy. Am J Med Genet A. 2010;152A(7):1608–1616. doi: 10.1002/ajmg.a.33474
  9. SMA families. Simard L. Genetic basis of spinal muscular atrophy. (In Russ). Available from: http://f-sma.ru/39.html. Accessed: 15.12.2020.
  10. Sugarman EA, Nagan N, Zhu H, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur J Hum Genet. 2012;20(1):27–32. doi: 10.1038/ejhg.2011.134
  11. Darras BT. Spinal muscular atrophies. Pediatr Clin North Am. 2015;62(3):743–766. doi: 10.1016/j.pcl.2015.03.010
  12. Mercuri Е, Finkel R, Muntoni F, et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscular Disorders. 2018;28(2):103–115. doi: 10.1016/j.nmd.2017.11.005
  13. Dubowitz V. Ramblings in the history of spinal muscular atrophy. Neuromuscul Disord. 2009;19(1):69–73. doi: 10.1016/j.nmd.2008.10.004
  14. Munsat TL. Workshop Report: International SMA collaboration. Neuromusc Disord. 1991;1:81.
  15. Russman BS. Spinal muscular atrophy: clinical classification and disease heterogeneity. J Child Neurol. 2007;22(8):946–951. doi: 10.1177/0883073807305673
  16. Zerres K, Davies KE. 59th ENMC International Workshop: Spinal Muscular Atrophies: recent progress and revised diagnostic criteria 17–19 April 1998, Soestduinen, The Netherlands. Neuromuscul Disord. 1999;9(4):272–278. doi: 10.1016/s0960-8966(99)00016-4
  17. Dubowitz V. Very severe spinal muscular atrophy (SMA type 0): an expanding clinical phenotype. Eur J Paediatr Neurol. 1999;3(2):49–51. doi: 10.1053/ejpn.1999.0181
  18. MacLeod MJ, Taylor JE, Lunt PW, et al. Prenatal onset spinal muscular atrophy. Eur J Paediatr Neurol. 1999;3(2):65–72. doi: 10.1053/ejpn.1999.0184
  19. Dubowitz V. Very severe spinal muscular atrophy (SMA type 0): an expanding clinical phenotype. Eur J Paediatr Neurol. 1999;3(2):49–51. doi: 10.1053/ejpn.1999.0181
  20. Felderhoff-Mueser U, Grohmann K, Harder A, et al. Severe spinal muscular atrophy variant associated with congenital bone fractures. J Child Neurol. 2002;17(9):718–721. doi: 10.1177/088307380201700915
  21. Kelly TE, Amoroso K, Ferre M, et al. Spinal muscular atrophy variant with congenital fractures. Am J Med Genet. 1999;87(1):65–68. doi: 10.1002/(SICI)1096-8628(19991105)87:1<65::AID-AJMG13>3.0.CO;2-5
  22. Rudnik-Schöneborn S, Heller R, Berg C, et al. Congenital heart disease is a feature of severe infantile spinal muscular atrophy. J Med Genet. 2008;45(10):635–638. doi: 10.1136/jmg.2008.057950
  23. Shababi M, Habibi J, Yang HT, et al. Cardiac defects contribute to the pathology of spinal muscular atrophy models. Hum Mol Genet. 2010;19(20):4059–4071. doi: 10.1093/hmg/ddq329
  24. Von Gontard A, Zerres K, Backes M, et al. Intelligence and cognitive function in children and adolescents with spinal muscular atrophy. Neuromuscul Disord. 2002;12(2):130–136. doi: 10.1016/s0960-8966(01)00274-7
  25. Zerres K, Rudnik-Schöneborn S, Forrest E, et al. A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J Neurol Sci. 1997;146(1):67–72. doi: 10.1016/s0022-510x(96)00284-5
  26. Kinali M, Banks LM, Mercuri E, et al. Bone mineral density in a paediatric spinal muscular atrophy population. Neuropediatrics. 2004;35:325–328. doi: 10.1055/s-2004-830366
  27. Khatri IA, Chaudhry US, Seikaly MG, et al. Low bone mineral density in spinal muscular atrophy. J Clin Neuromuscul Dis. 2008;10(1):11–17. doi: 10.1097/CND.0b013e318183e0fa
  28. Shanmugarajan S, Tsuruga E, Swoboda KJ, et al. Bone loss in survival motor neuron (Smn(-/-) SMN2) genetic mouse model of spinal muscular atrophy. J Pathol. 2009;219(1):52–60. doi: 10.1002/path.2566
  29. Zerres K, Rudnik-Schoneborn S. Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch Neurol. 1995;52(5):518–523. doi: 10.1001/archneur.1995.00540290108025
  30. Piepers S, van den Berg LH, Brugman F, et al. A natural history study of late onset spinal muscular atrophy types 3b and 4. J Neurol. 2008;255(9):1400–1404. doi: 10.1007/s00415-008-0929-0
  31. Glanzman AM, Mazzone E, Main M, et al. The children's hospital of philadelphia infant test of neuromuscular disorders (CHOP INTEND): test development and reliability. Neuromuscul Disord. 2010;20(3):155–161. doi: 10.1016/j.nmd.2009.11.014
  32. Mazzone E, Bianco F, Martinelli D, et al. Assessing upper limb function in nonambulant SMA patients: development of a new module. Neuromuscul Disord. 2011;21(6):406–412. doi: 10.1016/j.nmd.2011.02.014
  33. Vuillerot C, Payan C, Iwaz J, et al. MFM Spinal Muscular Atrophy Study Group Responsiveness of the motor function measure in patients with spinal muscular atrophy. Arch Phys Med Rehabil. 2013;94(8):1555–1561. doi: 10.1016/j.apmr.2013.01.014
  34. Montes J, McDermott MP, Martens WB, et al. Six-Minute Walk Test demonstrates motor fatigue in spinal muscular atrophy. Neurology. 2010;74(10):833–838. doi: 10.1212/WNL.0b013e3181d3e308
  35. Montes J, Garber CE, Kramer SS, et al. Single-blind, randomized, controlled clinical trial of exercise in ambulatory spinal muscular atrophy: why are the results negative? J Neuromuscul Dis. 2015;2(4):463–470. doi: 10.3233/JND-150101
  36. Madsen KL, Hansen RS, Preisler N, et al. Training improves oxidative capacity, but not function, in spinal muscular atrophy type III. Muscle Nerve. 2015;52(2):240–244. doi: 10.1002/mus.24527
  37. Lewelt A, Krosschell KJ, Stoddard GJ, et al. Resistance strength training exercise in children with spinal muscular atrophy. Muscle Nerve. 2015;52(4):559–567. doi: 10.1002/mus.24568
  38. Hartley S, Stockley R. It's more than just physical therapy: reported utilization of physiotherapy services for adults with neuromuscular disorders attending a specialist centre. Disabil Rehabil. 2013;35(4):282–290. doi: 10.3109/09638288.2012.691940
  39. Fujak A, Kopschina C, Forst R, et al. Use of orthoses and orthopaedic technical devices in proximal spinal muscular atrophy. Results of survey in 194 SMA patients. Disabil Rehabil Assist Technol. 2011;6(4):305–311. doi: 10.3109/17483107.2010.525292
  40. Cunha MC, Oliveira AS, Labronici RH, Gabbai AA. Spinal muscular atrophy type II (intermediary) and III (Kugelberg-Welander). Evolution of 50 patients with physiotherapy and hydrotherapy in a swimming pool. Arq Neuropsiquiatr. 1996;54(3):402–406. doi: 10.1590/s0004-282x1996000300007
  41. Salem Y, Gropack SJ. Aquatic therapy for a child with type III spinal muscular atrophy: a case report. Phys Occup Ther Pediatr. 2010;30(4):313–324. doi: 10.3109/01942638.2010.493097
  42. Lemke D, Rothwell E, Newcomb TM, Swoboda KJ. Perceptions of equine-assisted activities and therapies by parents and children with spinal muscular atrophy. Pediatr Phys Ther. 2014;26(2):237–244. doi: 10.1097/PEP.0000000000000027
  43. Dunaway S, Montes J, O'Hagen J, et al. Independent mobility after early introduction of a power wheelchair in spinal muscular atrophy. J Child Neurol. 2013;28(5):576–582. doi: 10.1177/0883073812449383
  44. Wang CH, Finkel RS, Bertini ES, et al. Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol. 2007;22(8):1027–1049. doi: 10.1177/0883073807305788
  45. Sauvagnac-Quera R, Vabre C, Azzi V, et al. Prevention and treatment of scoliosis by Garches Brace in children with type Ib SMA. Ann Phys Rehabil Med. 2016;59:92. doi: 10.1016/j.rehab.2016.07.207
  46. Mercuri E, Bertini E, Iannaccone ST. Childhood spinal muscular atrophy: controversies and challenges. Lancet Neurol. 2012;11(5):443–452. doi: 10.1016/S1474-4422(12)70061-3
  47. Lunn MR, Wang CH. Spinal muscular atrophy. Lancet. 2008;371(9630):2120–2133. doi: 10.1016/S0140-6736(08)60921-6
  48. Fujak A, Kopschina C, Forst R, et al. Use of orthoses and orthopaedic technical devices in proximal spinal muscular atrophy. Results of survey in 194 SMA patients. Disabil Rehabil Assist Technol. 2011;6(4):305–311. doi: 10.3109/17483107.2010.525292
  49. Catteruccia M, Vuillerot C, Vaugier I, et al. Orthopedic management of scoliosis by Garches Vrace and spinal fusion in SMA type 2 children. J Neuromuscul Dis. 2015;2(4):453–462. doi: 10.3233/JND-150084
  50. Mesfin A, Sponseller PD, Leet AI. Spinal muscular atrophy: manifestations and management. J Am Acad Orthop Surg. 2012;20(6):393–401. doi: 10.5435/JAAOS-20-06-393
  51. Phillips DP, Roye DP, Farcy JP, et al. Surgical treatment of scoliosis in a spinal muscular atrophy population. Spine. 1990;15(9):942–945. doi: 10.1097/00007632-199009000-00019
  52. Sponseller PD, Yang JS, Thompson GH, et al. Pelvic fixation of growing rods: comparison of constructs. Spine. 2009;34(16):1706–1710. doi: 10.1097/BRS.0b013e3181ab240e
  53. Chng SY, Wong YQ, Hui JH, et al. Pulmonary function and scoliosis in children with spinal muscular atrophy types II and III. J Paediatr Child Health. 2003;39(9):673–676. doi: 10.1046/j.1440-1754.2003.00266.x
  54. Modi HN, Suh SW, Hong JY, et al. Surgical correction of paralytic neuromuscular scoliosis with poor pulmonary functions. J Spinal Disord Tech. 2011;24(5):325–333. doi: 10.1097/BSD.0b013e3181f9f6fc
  55. Sporer SM, Smith BG. Hip dislocation in patients with spinal muscular atrophy. J Pediatr Orthop. 2003;23(1):10–14.
  56. McElroy MJ, Shaner AC, Crawford TO, et al. Growing rods for scoliosis in spinal muscular atrophy: structural effects, complications, and hospital stays. Spine. 2011;36(16):1305–1311. doi: 10.1097/BRS.0b013e3182194937
  57. Chandran S, McCarthy J, Noonan K, et al. Early treatment of scoliosis with growing rods in children with severe spinal muscular atrophy: a preliminary report. J Pediatr Orthop. 2011;31(4):450–454. doi: 10.1097/BPO.0b013e31821722b1
  58. Fujak A, Ingenhorst A, Heuser K, et al. Treatment of scoliosis in intermediate spinal muscular atrophy (SMA type II) in childhood. Ortop Traumatol Rehabil. 2005;7(2):175–179.
  59. Anari JB, Spiegel DA, Baldwin KD. Neuromuscular scoliosis and pelvic fixation in 2015: where do we stand? World J Orthop. 2015;6(8):564–566. doi: 10.5312/wjo.v6.i8.564
  60. Odent T, Ilharreborde B, Miladi L, et al. Fusionless surgery in early-onset scoliosis. Orthop Traumatol Surg Res. 2015;101 (6 Suppl):S281–S288. doi: 10.1016/j.otsr.2015.07.004
  61. Yoon WW, Sedra F, Shah S, et al. Improvement of pulmonary function in children with early-onset scoliosis using magnetic growth rods. Spine. 2014;39(15):1196–1202. doi: 10.1097/BRS.0000000000000383
  62. Figueiredo N, Kananeh SF, Siqueira HH, et al. The use of magnetically controlled growing rod device for pediatric scoliosis. Neurosciences (Riyadh). 2016;21(1):17–25. doi: 10.17712/nsj.2016.1.20150266
  63. La Rosa G, Oggiano L, Ruzzini L. Magnetically controlled growing rods for the management of early-onset scoliosis: a preliminary report. J Pediatr Orthop. 2017;37(2):79–85. doi: 10.1097/BPO.0000000000000597
  64. Dannawi Z, Altaf F, Harshavardhana NS, et al. Early results of a remotely-operated magnetic growth rod in early-onset scoliosis. Bone Joint J. 2013;95B(1):75–80. doi: 10.1302/0301-620X.95B1.29565
  65. Cheung KM, Cheung JP, Samartzis D, et al. Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series. Lancet. 2012;379(9830):1967–1974. doi: 10.1016/S0140-6736(12)60112-3
  66. Fujak A, Raab W, Schuh A, et al. Operative treatment of scoliosis in proximal spinal muscular atrophy: results of 41 patients. Arch Orthop Trauma Surg. 2012;132(12):1697–1706. doi: 10.1007/s00402-012-1610-8
  67. Livingston K, Zurakowski D, Snyder B. Growing Spine Study GroupChildren's Spine Study Group. Parasol rib deformity in hypotonic neuromuscular scoliosis: a new radiographical definition and a comparison of short-term treatment outcomes with VEPTR and growing rods. Spine. 2015;40(13):E780–E786. doi: 10.1097/BRS.0000000000000911
  68. Fujak A, Raab W, Schuh A, et al. Natural course of scoliosis in proximal spinal muscular atrophy type II and IIIa: descriptive clinical study with retrospective data collection of 126 patients. BMC Musculoskelet Disord. 2013;14:283. doi: 10.1186/1471-2474-14-283
  69. Mills B, Bach JR, Zhao C, et al. Posterior spinal fusion in children with flaccid neuromuscular scoliosis: the role of noninvasive positive pressure ventilatory support. J Pediatr Orthop. 2013;33(5):488–493. doi: 10.1097/BPO.0b013e318287058f
  70. Zenios M, Sampath J, Cole C, et al. Operative treatment for hip subluxation in spinal muscular atrophy. J Bone Joint Surg Br. 2005;87(11):1541–1544. doi: 10.1302/0301-620X.87B11.16216
  71. Haaker G, Fujak A. Proximal spinal muscular atrophy: current orthopedic perspective. Appl Clin Genet. 2013;6(11):113–120. doi: 10.2147/TACG.S53615
  72. Skalsky AJ, McDonald CM. Prevention and management of limb contractures in neuromuscular diseases. Phys Med Rehabil Clin N Am. 2012;23(3):675–687. doi: 10.1016/j.pmr.2012.06.009
  73. Muqit MM, Moss J, Sewry C, Lane RJ. Phenotypic variability in siblings with type III spinal muscular atrophy. J Neurol Neurosurg Psychiatry. 2004;75(12):1762–1764. doi: 10.1136/jnnp.2003.018614
  74. Cunha MC, Oliveira AS, Labronici RH, Gabbai AA. Spinal muscular atrophy type II (intermediary) and III (Kugelberg-Welander). Evolution of 50 patients with physiotherapy and hydrotherapy in a swimming pool. Arq Neuropsiquiatr. 1996;54(3):402–406. doi: 10.1590/s0004-282x1996000300007
  75. Salem Y, Gropack SJ. Aquatic therapy for a child with type III spinal muscular atrophy: a case report. Phys Occup Ther Pediatr. 2010;30(4):313–324. doi: 10.3109/01942638.2010.493097
  76. Lemke D, Rothwell E, Newcomb TM, Swoboda KJ. Perceptions of equine-assisted activities and therapies by parents and children with spinal muscular atrophy. Pediatr Phys Ther. 2014;26(2):237–244. doi: 10.1097/PEP.0000000000000027
  77. Dunaway S, Montes J, O'Hagen J, et al. Independent mobility after early introduction of a power wheelchair in spinal muscular atrophy. J Child Neurol. 2013;28(5):576–582. doi: 10.1177/0883073812449383
  78. Fujak A, Kopschina C, Gras F, et al. Contractures of the upper extremities in spinal muscular atrophy type II. Descriptive clinical study with retrospective data collection. Ortop Traumatol Rehabil. 2010;12(5):410–419.
  79. Wang HY, Ju YH, Chen SM, et al. Joint range of motion limitations in children and young adults with spinal muscular atrophy. Arch Phys Med Rehabil. 2004;85(10):1689–1693. doi: 10.1016/j.apmr.2004.01.043
  80. Seliverstov YA, Klyushnikov SA, Illarioshkin SN. Spinal muscular atrophy: concept, differential diagnosis, treatment prospects. Nervous Diseases. 2015;(3):9–17. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Dynamics of the number of references to literary sources in the PubMed database for the keywords "spinal muscular atrophy" as of February 2021

Download (47KB)

Copyright (c) 2021 Ponomarenko G.N., Koltsov A.A., Maltsev I.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies