The prospects for the application of the electromagnetic waves in the terahertz frequency range for the purpose of physiotherapy (a retrospective review)


Cite item

Full Text

Abstract

This review of the literature publications is focused on the articles in domestic and foreign editions devoted to the research on biological effects of electromagnetic radiation in the terahertz (THz) frequency range. It makes use of the Scopus, Web of Science, MedLine, RSCI, and other databases containing the relevant references for the period from 1970 up to the present days. This physical factor has found application in the Russian physiotherapeutic practice not very long ago. The main areas of its application include cardiovascular disease and neurological conditions. At the same time. the influence of electromagnetic radiation in the terahertz frequency range on human health and vital activity remains virtually unexplored. The available publications give evidence of the high biological activity of the terahertz electromagnetic waves which suggests the necessity of their further investigation.

About the authors

Vera Vasil’evna Kir’yanova

Federal state budgetary educational institution of higher professional education “I.I. Mechnikov North-Western State Medical University”

Email: Vera.kiryanova@szgmu.ru
doctor med.sci., professor, head of the Department of Physiotherapy and Medical Rehabilitation 191015, Sankt-Peterburg, Russia

E. N Zharova

Federal state budgetary educational institution of higher professional education “I.I. Mechnikov North-Western State Medical University”

191015, Sankt-Peterburg, Russia

N. T Bagraev

Peter the Great, Sankt-Peterburg Polytechnical University

Sankt-Peterburg, 195251, Russia

A. S Reukov

Federal state budgetary institution «V.A. Almazov North-Western Federal Medical Research Center», Russian Ministry of Health

Sankt-Peterburg, 197341, Russia

S. V Loginova

Elizavetinskaya City Hospital № 3

Sankt-Peterburg, 195257, Russia

References

  1. Улащик В.С. Электромагнитные волны терагерцового диапазона и их лечебной-профилактическое использовани. Вопр. курортол. 2007; (4): 3-5.
  2. Kirichuk V.F. et al. Use of terahertz electromagnetic radiation for correction of blood rheology parameters in patients with unstable angina under conditions of treatment with isoket, an NO donor. Bull. Exp. Biol. Med. 2008; 146 (3): 293-4.
  3. Olshevskaya J.S., et al. Effect of terahertz electromagnetic waves on neurons systems. In: Computational Technologies in Electrical and Electronics Engineering, 2008. «SIBIRCON 2008». Proceeding 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering. Novosibirsk; 2008: 210-1.
  4. Wilmink G.J. et al. Quantitative investigation of the bioeffects associated with terahertz radiation. In: Optical Interactions with Tissues and Cells XXI. 2010: 75620L-10.
  5. Баграев Н.Т., Клячкин Л.Е., Маляренко А.М., Новиков Б.А. Применение кремниевых источников терагерцевого излучения в медицине. Биотехносфера. 2015; 5 (41): 55-15.
  6. Wilmink G.J., Grundt J.E. Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation. J. Infrared Millimeter, Terahertz Waves. 2011; 32 (10): 1074-122.
  7. Jacques S.L., McAuliffe D.J. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation. Photochem. and Photobiol. 1991; 53 (6): 769-75.
  8. Kirichuck V.F. et al. Sex-specific differences in changes of disturbed functional activity of platelets in albino rats under the effect of terahertz electromagnetic radiation at nitric oxide frequencies. Bull. Exp. Biol. Med. 2008; 145 (1): 75-3.
  9. Dalzell D.R. et al. Damage thresholds for terahertz radiation. In: Optical Interactions with Tissues and Cells XXI. 2010: SPIE. 7562: 75620M-8.
  10. Webb S.J., Dodds D.D. Inhibition of bacterial cell growth by 136 gc microwaves. Nature. 1968; 218 (5139): 374-5.
  11. Xiong S., Shaomin P. Influence of submillimeter laser radiation on the growth of paddy rice. Appl. Laser. 1986; 6 (33).
  12. Hu N. THz irradiation of d. melanogaster. Appl. Infrared Optoelectron. 1987; 1: 7-3.
  13. Киселев В.К., Кулешов E.M., Каменев Ю.E., Делевский Ю.П., Заржетская Н.A. и др. (ред.). Применение радиоволн миллиметрового и субмиллиметрового диапазонов: Сборник научных трудов по проблеме «Физика и техника миллиметровых и субмиллиметровых волн». Харьков: Институт радиофизики и электроники; 1994.
  14. Govorun V.M. et al. Far-infrared radiation effect on the structure and properties of proteins. Int. J. Infrared Millimeter Waves. 1991; 12 (12): 1469-74.
  15. Ильина С.А., Бабушкина Г.Ф., Гайдук В.И., Храпко A.M., Зиновьева Н.Б. Исследование биологических эффектов электромагнитного излучения субмиллиметровой части терагерцового диапазона. Биомедицинская радиоэлектроника. 2011; 12 (12): 1469-74.
  16. Hadjiloucas S., Chahal M., Bowen J. Preliminary results on the nonthermal effects of 200-350 GHz radiation on the growth rate of S. cerevisiae cells in microcolonies. Phys. Med. Biol. 2002; 47 (21): 3831.
  17. Bourne N. et al. The effects of terahertz radiation on human keratinocyte primary cultures and neural cell cultures. Altern. Lab. Anim. 2008; 36 (6): 667-84.
  18. Scarfi M.R. et al. THz exposure of whole blood for the study of biological effects on human lymphocytes. J. Biol. Phys. 2003; 29 (2): 171-6.
  19. Wilmink G.J. et al. Determinationb of death thresholds and identification of terahertz (THz)-specific gene expression signatures. In: Optical Interactions with Tissues and Cells XXI. 2010: SPIE. 7562: 75620K-75600K-8.
  20. Beuthan J., Dressler C. et al. Laser-induced fluorescence detection of quantum dots redistributed in thermally stressed tumor cells. Laser Phys. 2004; 14 (2): 213-20.
  21. Островский Н.В. и др. Комплексное лечение ожоговых ран терагерцовыми волнами молекулярного спектра оксида азота. Бюллетень медицинских Интернет-конференций. 2012; 2 (6): 426-30.
  22. Киричук В.Ф., Цымбал А.А., Креницкий А.П., Майбородин А.В. Влияние терагерцового излучения на частотах оксида азота на интенсивность процессов липопероксидации и антиоксидантные свойства крови в условиях стресса. Бюлл. экспер. биол. 2009; (8): 166-9.
  23. Zeni O. et al. Cytogenetic observations in human peripheral blood leukocytes following in vitro exposure to THz radiation: a pilot study. Hlth Phys. 2007; 92 (4): 349-57.
  24. Ольшевская Ю.С., Козлов А.С., Петров А.К., Запара Т.А. и др. Влияние на нейроны in vitro терагерцового (субмиллиметрового) лазерного излучения. Журнал высшей нервной деятельности имени И.П. Павлова. 2009; 59 (3): 353-9.
  25. Киричук В.Ф., Цымбал А.А. Влияние терагерцового излучения на частотах оксида азота на интенсивность процессов липопероксидации и антиоксидантные свойства крови в условиях стресса. Бюлл. экспер. биол. 2009; 148 (8): 166-9.
  26. Kirichuk V.F., Tsymbal A.A., Antipova O.N., Krenitskiy A.P. et al. Changing the concentration of corticosterone, a marker of stress reaction under the influence of terahertz radiation at frequencies 150.176-150.664 GHz nitrogen oxide. Rossiyskiy fiziologicheskiy zhurnal imeni I.M. Sechenova. 2008; 94 (11): 1285-90.
  27. Пронина Е.А., Райкова С.В., Швиденко И.Г., Шуб Г.М. Влияние электромагнитного излучения на течение экспериментальной раневой инфекции. Саратовский научно-медицинский журнал. 2010; 6 (3): 500-3.

Copyright (c) 2016 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies