The use of the knee joint replacement prosthesis after the amputation at the level between hip and knee


Cite item

Full Text

Abstract

This review was designed to characterize the current state-of-the-art of knee joint replacement prosthetics with respect to the cases of the amputation at the level between hip and knee. Various types of knee joint modules are compared. The clinical and biomechanical methods are described that are employed to evaluate the effectiveness of the movements of the disabled patients following the amputation at the level between hip and knee.

About the authors

R. A Prokopenko

Public joint-stock company “I.S. Bruk Institute of Electronic Controlling Machines”

Email: raprokopenko@yandex.ru
119334, Moscow, Russian Federation

References

  1. Питкин М.Р. Теория построения и практика синтеза антропоморфных протезов нижней конечности: Дис. ... д-ра техн. наук. СПб.; 2006.
  2. Ziegler-Graham K., MacKenzie E.J., Ephraim P.L., Travison T.G., Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008; 89(3): 422-9.
  3. Torres M. Incidence and causes of limb amputations. Phys. Med. Rehabil.: State Art Rev. 1994; 8: 1-8.
  4. International Classification of Functioning, Disability and Health: ICF. World Health Organisation; 2001.
  5. Theeven P.J., Hemmen B., Brink P.R., Smeets R.J., Seelen H.A. Measures and procedures utilized to determine the added value of microprocessor-controlled prosthetic knee joints: a systematic review. BMC Musculoskelet. Disord. 2013; 14(1): 333.
  6. HCFA Common Procedure Coding System (HCPCS). Springfield (VA): U.S. Department of Commerce, National Technical Information Service. Centers for Medicare and Medicaid Services. U.S. Department of Health and Human Services; 2001.
  7. Gailey R.S., Roach K.E., Applegate E.B., Cho B., Cunniffe B., Licht S. et al. The amputee mobility predictor: An instrument to assess determinants of the lower-limb amputee’s ability to ambulate. Arch. Phys. Med. Rehabil. 2002; 83(5): 613-27.
  8. Driver T.A. Innovation for Powered Prostheses Utilizing Pneumatic Actuators: PhD Thesis. Tuscaloosa, Alabama; 2012.
  9. Sup F.C. IV. A Powered Self-contained Knee and Ankle Prosthesis for Near Normal Gait in Transfemoral Amputees: PhD Thesis. Nashville, Tennessee; 2009.
  10. Lambrecht B.G.A. Design of a Hybrid Passive-active Prosthesis for Above-knee Amputees: PhD Thesis. Berkeley; 2008.
  11. Borjian R. Design, Modeling, and Control of an Active Prosthetic Knee: PhD Thesis. Waterloo, Ontaroi, Canada; 2008.
  12. Alcaide-Aguirre R.E., Morgenroth D.C., Ferris D.P. Motor control and learning with lower-limb myoelectric control in amputees. J. Rehabil. Res. Dev. 2013; 50(5): 687.
  13. Hargrove L.J., Simon A.M., Lipschutz R., Finucane S.B., Kuiken T.A. Non-weight-bearing neural control of a powered transfemoral prosthesis. J. NeuroEngineer. Rehabil. 2013; 10(1): 62.
  14. Hargrove L.J., Simon A.M., Young A.J., Lipschutz R.D., Finucane S.B., Smith D.G., Kuiken T.A. Robotic leg control with EMG decoding in an amputee with nerve transfers. N. Engl. J. Med. 2013; 369(13): 1237-42.
  15. Clippinger F.W., Seaber A.V., McElhaney J.H., Harrelson J.M., Maxwell G.M. Afferent sensory feedback for lower extremity prosthesis. Clin. Orthop. 1982; 169: 202-6.
  16. Webb G. Real-time Electro-tactile Biofeedback for Amputee Gait ReTraining: PhD Thesis. Guildford, Surrey; 2012.
  17. Sup F., Bohara A., Goldfarb M. Design and control of a powered transfemoral prosthesis. Int. J. Robot. Res. 2008; 27(2): 263-73.
  18. Hogan N. Impedance control: An approach to manipulation. J. Dynamic. Syst. Measur., Control. 1985; 107: 1-24.
  19. Фарбер Б.С., Витензон А.С., Морейнис И.Ш. Теоретические основы построения протезов нижних конечностей и коррекции движения. М.: ЦНИИПП; 1994; т. 1.
  20. Aghasadeghi N., Zhao J/, Hargrove L.J., Ames A.D., Perreault E.J., Bretl T. Learning impedance controller parameters for lower-limb prostheses. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo; 2013: 4268-74.
  21. Akbari M., Farahmand F., Abu Osman N.A., Zohoor H. A robotic model of transfemoral amputee locomotion for design optimization of knee controllers. Int. J. Adv. Robot. Syst. 2013; 10: 161.
  22. Pejhan S., Farahmand F., Parnianpour M. Design optimization of an above-knee prosthesis based on the kinematics of gait. In: Engineering in Medicine and Biology Society. 2008. 30th Annual International Conference of the IEEE. Vancouver; 2008: 4274-7.
  23. Sinnet R.W., Zhao H., Shah R.P., Ames A.D. Simulating prosthetic devices with human-inspired hybrid control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco; 2011: 1723-30.
  24. Zhao Jie, Berns K., de Souza Baptista R., Bo A.P.L. Design of variabledamping control for prosthetic knee based on a simulated biped. In: The Rehabilitation Robotics (ICORR), 2013 IEEE International Conference. Seattle, WA; 2013: 1-6.
  25. Zhao J., Berns K., Baptista R.D.S., Bo A., Luksch T. A comparison of a passive and variable-damping controlled leg prosthesis in a simulated environment. In: 16th International Conference on Climbing and Walking Robots CLAWAR. Sydney; 2013:
  26. Tanawongsuwan R., Bobick A. Performance analysis of time-distance gait parameters under different speeds. In: Audio-and Video-based Biometric Person Authentication. Guidlford, UK; 2003: 715-24.
  27. Kaufman K.R., Frittoli S., Frigo C.A. Gait asymmetry of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Clin. Biomech. 2012; 27(5): 460-5.
  28. Скворцов Д.В. Клинический анализ движений. Анализ походки. Иваново: Стимул; 1996.
  29. Рукина Н.Н., Кузнецов А.Н., Белова А.Н., Воробьева О.В. Особенности биомеханических характеристик опороспособности и походки у пациентов с экзопротезом нижней конечности. Российский журнал биомеханики. 2014; 18(3): 389-97.
  30. van der Linde H., Hofstad C.J., Geurts A.C., Postema K., Geertzen J.H., van Limbeek J. A systematic literature review of the effect of different prosthetic components on human functioning with a lower-limb prosthesis. J. Rehabil. Res. Dev. 2004; 41(4): 555-70.
  31. Franchignoni F., Giordano A., Ferriero G., Orlandini D., Amoresano A., Perucca L. Measuring mobility in people with lower limb amputation: Rasch analysis of the mobility section of the prosthesis evaluation questionnaire. J. Rehabil. Med. 2007; 39(2): 138-44.
  32. Legro M.W., Reiber G.D., Smith D.G. Prosthesis evaluation questionnaire for persons with lower limb amputations: assessing prosthesis-related quality of life. Arch. Phys. Med. Rehabil. 1998; 79: 931-8.
  33. Legro M.W., Reiber G.E., Smith D.G. A Prosthesis Evaluation Questionnaire (PEQ). In: The Association for Health Services Research 14th Annual Meeting, Chicago. June 15-17, 1997. ...; 1997:
  34. Larsson B., Johannesson A., Andersson I.H., Atroshi I. The Locomotor Capabilities Index; validity and reliability of the Swedish version in patients with lower limb amputation.”Hlth Qual. Life Outcomes. 2009; 7(1): 44.
  35. Grisé M.C., Gauthier-Gagnon C., Martineau G.G. Prosthetic profile of people with lower extremity amputation: conception and design of a follow-up questionnaire. Arch. Phys. Med. Rehabil. 1993; 74(8): 862-70.
  36. Ryall N.H., Eyres S.B., Neumann V.C., Bhakta B.B., Tennant A. The SIGAM mobility grades: a new population-specific measure for lower limb amputees. Disabil. Rehabil. 2003; 25(15): 833-44.
  37. Hagberg K., Brånemark R., Hägg O. Questionnaire for Persons with a Transfemoral Amputation (Q-TFA): initial validity and reliability of a new outcome measure. J. Rehabil. Res. Dev. 2004; 41(5): 695-706.
  38. Theeven P., Hemmen B., Stevens C., Ilmer E., Brink P., Seelen H. Feasibility of a new concept for measuring actual functional performance in daily life of transfemoral amputees. J. Rehabil. Med. 2010; 42(8): 744-51.
  39. Kark L., McIntosh A.S., Simmons S. The use of the 6-min walk test as a proxy for the assessment of energy expenditure during gait in individuals with lower-limb amputation. Int. J. Rehabil. Res. 2011; 34(3): 227-34.
  40. Frlan-Vrgoc L., Vrbanić T.S.-L., Kraguljac D., Kovacević M. Functional outcome assessment of lower limb amputees and prosthetic users with a 2-minute walk test. Coll. Antropol. 2011; 35(4): 1215-8.
  41. van Eijk M.S., van der Linde H., Buijck B., Geurts A., Zuidema S., Koopmans R. Predicting prosthetic use in elderly patients after major lower limb amputation. Prosthet. Orthot. Int. 2012; 36(1): 45-52.
  42. Bowden M.G., Behrman A.L. Step activity monitor: accuracy and testretest reliability in persons with incomplete spinal cord injury. J. Rehabil. Res. Dev. 2007; 44(3): 355-62.
  43. Winter D.A. Biomechanics and Motor Control of Human Movement. Hoboken, N.J.: Wiley; 2009.
  44. Perry J. Gait Analysis: Normal and Pathological function. 2nd Ed. Thorofare, N.J.: SLACK; 2010.
  45. Weir R.F., Troyk P.R., DeMichele G.A., Kerns D.A., Schorsch J.F., Maas H. Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording. IEEE Trans. Biomed. Eng. 2009; 56(1): 159-71.
  46. He Huang, Fan Zhang, Hargrove L.J., Zhi Dou, Rogers D.R., Englehart K.B. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE Trans. Biomed. Eng. 2011; 58(10): 2867-75.
  47. Lin Du, Fan Zhang, Ming Liu, He Huang. Toward design of an environment-aware adaptive locomotion-mode-recognition system. IEEE Trans. Biomed. Eng. 2012; 59(10): 2716-25.
  48. Inoue K., Wada T., Harada R., Tachiwana S. Novel knee joint mechanism of transfemoral prosthesis for stair ascent. In: The Rehabilitation Robotics (ICORR), 2013 IEEE International Conference. Seattle, WA; 2013: 1-6.
  49. Unal R., Carloni R., Hekman E.E., Stramigioli S., Koopman H. Conceptual design of an energy efficient transfemoral prosthesis. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference. Taipei; 2010: 343-8.
  50. Unal R., Klijnstra F., Burkink B., Behrens S.M., Hekman E.E., Stramigioli S. et al. Modeling of WalkMECH: A fully-passive energy-efficient transfemoral prosthesis prototype. In: IEEE... International Conference on Rehabilitation Robotics: [Proceedings]. Soattb, WA; 2013: 1-6.
  51. Bellmann M., Schmalz T., Ludwigs E., Blumentritt S. Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint. Biomed. Tech. (Berl.). 2012; 57(6): 435-44.
  52. Highsmith M.J., Kahle J.T., Lura D.J., Lewandowski A.L., Quillen W.S., Kim S.H. Stair ascent and ramp gait training with the genium knee. Technol. Innov. 2014; 15(4): 349-58.
  53. Vucina A. Kinematics and forces in the above-knee prosthesis during the stair climbing. Int. J. Simul. Model. 2005; 4(1): 17-26.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».