Dynamics of markers of oxidative stress during the complex use of therapeutic physical factors in patients with true eczema associated with metabolic syndrome

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Among various pathological conditions associated with true eczema, metabolic syndrome occupies a special place, the high social significance of which is determined by its dominant influence on the main demographic indicators — life expectancy and mortality of the population.

AIM: Assessment of the dynamics of parameters of pro- and antioxidant systems in patients with true eczema in combination with metabolic syndrome during the course application of broadband medium-wave phototherapy, mesodiencephalic modulation and their combination.

MATERIALS AND METHODS: A prospective, controlled, comparative, randomized study was performed involving 115 patients with true eczema combined with metabolic syndrome, who were divided into 4 groups using simple randomization. The first group (control) received only basic drug therapy. In the second (comparison 1), third (comparison 2), and fourth (main) groups, patients additionally underwent courses of broadband medium-wave phototherapy, mesodiencephalic modulation, and their combination, respectively. The results of the course application of physiofactors were assessed by the dynamics of pro- and antioxidant system indices before and after the end of therapy.

RESULTS: When comparing the main markers of oxidative stress between the group of healthy people and patients with true eczema in combination with metabolic syndrome, a pronounced imbalance in the "prooxidants-antioxidants" system was established, which indicates the development of oxidative stress. Conducting complex therapy had a corrective effect on the parameters of the lipid peroxidation process. More pronounced shifts in lipid peroxide metabolism indicators were revealed in the groups with the additional use of physiotherapeutic factors. The maximum corrective effect in relation to oxidative stress was established in the group with the complex use of physiofactors. An integrative assessment of the dynamics of oxidative stress markers using the antioxidant protection coefficient confirmed the results obtained.

CONCLUSION: The use of therapeutic physical factors in the therapy of true eczema and metabolic syndrome is largely based on their ability to act as redox regulators of intracellular processes, exhibiting a stress-limiting effect and restoring oxidation-reduction homeostasis. The most promising in this regard are broadband medium-wave phototherapy and mesodiencephalic modulation.

About the authors

Emma E. Arutyunyan

North-Ossetian State Medical Academy

Email: dr.arutyunyan@bk.ru
ORCID iD: 0000-0001-5402-5009
SPIN-code: 7219-5306
Russian Federation, Vladikavkaz

Anna A. Mikhailova

Central state medical academy of department of presidential affairs

Email: noc@med.ru
ORCID iD: 0000-0002-4260-1619
SPIN-code: 7673-3241

MD, Dr. Sci. (Medicine), Associate Professor

Russian Federation, Moscow

Sergey N. Nagornev

Central state medical academy of department of presidential affairs

Author for correspondence.
Email: drnag@mail.ru
ORCID iD: 0000-0002-1190-1440
SPIN-code: 2099-3854

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

References

  1. Brown SJ. Molecular mechanisms in atopic eczema: Insights gained from genetic studies. J Pathol. 2017;241(2):140–145. doi: 10.1002/path.4810
  2. Civelek E, Sahiner UM, Yüksel H, et al. Prevalence, burden, and risk factors of atopic eczema in schoolchildren aged 10-11 years: A national multicenter study. J Investig Allergol Clin Immunol. 2011;21(4):270–277.
  3. Conradi AO, Baranova EI, Gurevich VS, et al. Tactics of management of patients with cardiovascular diseases. Roundtable report. Consilium Medicum. 2021;23(6):504–510. EDN: UIIIWH doi: 10.26442/20751753.2021.6.200950
  4. Li D, Wang L, Zhou Z, et al. Lifetime risk of cardiovascular disease and life expectancy with and without cardiovascular disease according to changes in metabolic syndrome status. Nutr Metab Cardiovasc Dis. 2022;32(2):373–381. doi: 10.1016/j.numecd.2021.10.014
  5. Forman HJ, Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689–709. doi: 10.1038/s41573-021-00233-1
  6. Nagoev BS, Nalchikova MT. Features of lipid peroxidation in patients with eczema. Kuban Scientific Med Bull. 2012;(4):74–77. EDN: PVRDGR
  7. Novikova LA, Dontsova EV, Chernov AV, et al. Features of cytokine status, lipid peroxidation and the state of the antioxidant system in patients with true eczema. Pharmateka. 2022;29(14):73–77. EDN: EXPIGA doi: 10.18565/pharmateca.2022.14.73-77
  8. Cordiano R, Di Gioacchino M, Mangifesta R, et al. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: An update. Molecules. 2023;28(16):5979. doi: 10.3390/molecules28165979
  9. Amin MN, Liza KF, Sarwar MS, et al. Effect of lipid peroxidation, antioxidants, macro minerals and trace elements on eczema. Arch Dermatol Res. 2015;307(7):617–623. doi: 10.1007/s00403-015-1570-2
  10. Yu Y, Liu S, Yang L, et al. Roles of reactive oxygen species in inflammation and cancer. Med Comm (2020). 2024;5(4):e519. doi: 10.1002/mco2.519
  11. Lingappan K. NF-κB in oxidative stress. Curr Opin Toxicol. 2018;(7):81–86. doi: 10.1016/j.cotox.2017.11.002
  12. Iyer SS, Accardi CJ, Ziegler TR, et al. Cysteine redox potential determines pro-inflammatory IL-1beta levels. PLoS One. 2009;4(3):e5017. doi: 10.1371/journal.pone.0005017
  13. Lei Y, Wang K, Deng L, et al. Redox regulation of inflammation: Old elements, a new story. Med Res Rev. 2015;35(2):306–340. doi: 10.1002/med.21330
  14. Monserrat-Mesquida M, Quetglas-Llabrés M, Capó X, et al. metabolic syndrome is associated with oxidative stress and proinflammatory state. Antioxidants (Basel). 2020;9(3):236. doi: 10.3390/antiox9030236
  15. Franco C, Sciatti E, Favero G, et al. Essential hypertension and oxidative stress: Novel future perspectives. Int J Mol Sci. 2022;23(22):14489. doi: 10.3390/ijms232214489
  16. Hachiya R, Tanaka M, Itoh M, et al. Molecular mechanism of crosstalk between immune and metabolic systems in metabolic syndrome. Inflamm Regen. 2022;42(1):13. doi: 10.1186/s41232-022-00198-7
  17. Jakubczyk K, Dec K, Kałduńska J, et al. Reactive oxygen species: Sources, functions, oxidative damage. Pol Merkur Lekarski. 2020;48(284):124–127.
  18. Touyz RM, Rios FJ, Alves-Lopes R, et al. Oxidative stress: A unifying paradigm in hypertension. Can J Cardiol. 2020;36(5):659–670. doi: 10.1016/j.cjca.2020.02.081
  19. Ulashchik VS. Active oxygen species, antioxidants, and the action of therapeutic physical factors. Problems Balneology, Physiotherapy Exercise Therapy. 2013;90(1):60–69. EDN: PYASAR
  20. Zalesskaya GA, Ulashchik VS. Molecular mechanisms of action of photohemotherapy (review). J Applied Spectroscopy. 2009;76(1):51–75. EDN: JVEMET
  21. Rathod DG, Muneer H, Masood S. Phototherapy. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  22. Gornov SV, Shestopalov AE, Litvinenko AB, et al. The program of hardware correction of the neuropsychic state of highly qualified athletes using mesodiencephalic modulation. Russ J Environmental Rehab Med. 2022;(2):70–80. EDN: QZTTSN
  23. Yumashev AV. Fundamental principles and practical results of the prevention and treatment of distress using mesodiencephalic modulation. Azimut nauchnykh issledovanii: pedagogika i psikhologiya. 2017;6(4):376–379. EDN: YLVFTU
  24. Romanenko KV, Borovaya OO, Ermilova NV. Transcranial mesodiencephalic modulation and prospects for its use in dermatovenereology. Torsuevskie chteniya. 2020;(3):22–25. EDN: KMWYKK
  25. Hanifin JM, Baghoomian W, Grinich E, et al. The eczema area and severity index: A practical guide. Dermatitis. 2022;33(3):187–192. doi: 10.1097/DER.0000000000000895
  26. Recommendations for the management of patients with metabolic syndrome: Clinical guidelines. Moscow; 2013. 43 p. (In Russ.)
  27. Clinical guidelines: Eczema. Moscow: Russian Society of Dermatovenerologists and Cosmetologists; 2021. 60 p. (In Russ.)
  28. Gavrilov VB, Gavrilova AR, Mazhul LM. Analysis of methods for determination of lipid peroxidation products in serum by thiobarbituric acid test. Voprosy medicinskoj himii. 1987;33(1):118–122. (In Russ.) EDN: SMPWZH
  29. Volchegorsky IA, Nalimov AG, Yarovinsky BG, et al. Comparison of different approaches to the determination of lipid peroxidation products in heptanisopropanol extracts of blood. Voprosy medicinskoj himii. 1989;35(1):127–131. (In Russ.) EDN: SKGMSF
  30. Umnyagina IA, Strakhova LA, Blinova TV. Serum of 8-OHDG as a potential biomarker of oxidative dna damage in workers exposed to harmful working environments. Russ J Occupational Health Industrial Ecology. 2019;59(9):783–784. EDN: OEPPZZ doi: 10.31089/1026-9428-2019-59-9-783-784
  31. Korolyuk MA, Ivanova LI, Mayorova IG, Tokarev VE. Method for determination of catalase activity. Laboratornoe delo. 1988;(1):16–19. EDN: SICXEJ
  32. Kostyuk VA, Potapovich AI, Kovaleva ZhI. A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetin oxidation. Voprosy medicinskoj himii. 1990;36(2):88–91. EDN: SCXIZD
  33. Sharifi-Rad M, Anil Kumar NV, Zucca P, et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front Physiol. 2020;11:694. doi: 10.3389/fphys.2020.00694
  34. Raimondo A, Serio B, Lembo S. Oxidative stress in atopic dermatitis and possible biomarkers: Present and future. Indian J Dermatol. 2023;68(6):657–660. doi: 10.4103/ijd.ijd_878_22
  35. Sies H. Oxidative eustress: On constant alert for redox homeostasis. Redox Biol. 2021;41:101867. doi: 10.1016/j.redox.2021.101867
  36. Nagornev SN, Sytnik SI, Bobrovnitsky IP, et al. Pharmacological correction of lipoperoxidation in hypoxia and the possibility of increasing human altitude tolerance with the help of drugs of metabolic type of action. Ann Russ Acad Med Sci. 1996;(7):53–60. (In Russ.)
  37. Liu J, Han X, Zhang T, et al. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: From mechanism to therapy. J Hematol Oncol. 2023;16(1):116. doi: 10.1186/s13045-023-01512-7
  38. Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23
  39. Dominic A, Le NT, Takahashi M. Loop between NLRP3 inflammasome and reactive oxygen species. Antioxid Redox Signal. 2022;36(10-12):784–796. doi: 10.1089/ars.2020.8257
  40. Lu Y, Wang M, Bao J, et al. Association between oxidative balance score and metabolic syndrome and its components in US adults: A cross-sectional study from NHANES 2011–2018. Front Nutr. 2024;13(11):1375060. doi: 10.3389/fnut.2024.1375060
  41. Nono Nankam PA, Nguelefack TB, Goedecke JH, et al. Contribution of adipose tissue oxidative stress to obesity-associated diabetes risk and ethnic differences: Focus on women of African ancestry. Antioxidants (Basel). 2021;10(4):622. doi: 10.3390/antiox10040622
  42. Čolak E, Pap D. The role of oxidative stress in the development of obesity and obesity-related metabolic disorders. J Med Biochem. 2021;40(1):1–9. doi: 10.5937/jomb0-24652
  43. Nakai K, Yoneda K, Kubota Y. Oxidative stress in allergic and irritant dermatitis: From basic research to clinical management. Recent Pat Inflamm Allergy Drug Discov. 2012;6(3):202–209. doi: 10.2174/187221312802652839
  44. Chen PY, Chen CW, Su YJ, et al. Associations between levels of urinary oxidative stress of 8-OHdG and risk of atopic diseases in children. Int J Environ Res Public Health. 2020;17(21):8207. doi: 10.3390/ijerph17218207
  45. Kotenko KV, Frolkov VK, Nagornev SN, et al. Prospects for the use of drinking mineral waters in the rehabilitation of patients with coronavirus (COVID-19) infection: Analysis of the main sanogenetic mechanisms. Problems Balneology, Physiotherapy Exercise Therapy. 2021;98(6-2):75–84. EDN: RDBRST doi: 10.17116/kurort20219806275
  46. Petrova MS, Ruzova TK, Kotenko KV, Korchazhkina NB. Dynamics of metabolic exchange and circulation after lower limb traction elongaton in patients with lumbosacral dorsopathies. Physiotherapist. 2013;(6):25–30. EDN: RKPOQH
  47. Orekhova EM, Konchugova TV, Kulchitskaya DB, et al. Modern approaches to the use of transcerebral magnetic therapy for arterial hypertension. Problems Balneology, Physiotherapy Exercise Therapy. 2016;93(3):53–55. EDN: VZLSJFdoi: 10.17116/kurort2016353-55
  48. Kotenko KV, Kovalev SA, Abuseva GR, et al. Physical and rehabilitation medicine: National guidelines. 2nd ed, revised and expanded. Moscow: GEOTAR-Media; 2023. 912 p. (In Russ.) EDN: STQNKB
  49. Epifanov VA, Korchazhkina NB. Medical and social rehabilitation of patients with various pathologies. In 2 parts. Part II. Moscow: GEOTAR-Media; 2019. 560 p. (In Russ.) EDN: ULZAFF
  50. Schwarz A, Schwarz T. Molecular determinants of UV-induced immunosuppression. Exp Dermatol. 2002;11(Suppl. 1):9–12. doi: 10.1034/j.1600-0625.11.s.1.3.x
  51. Johnson-Huang LM, Suárez-Fariñas M, Sullivan-Whalen M, et al. Effective narrow-band UVB radiation therapy suppresses the IL-23/IL-17 axis in normalized psoriasis plaques. J Invest Dermatol. 2010;130(11):2654–2263. doi: 10.1038/jid.2010.166
  52. Grewe M, Gyufko K, Krutmann J. Interleukin-10 production by cultured human keratinocytes: Regulation by ultraviolet B and ultraviolet A1 radiation. J Invest Dermatol. 1995;104(1):3–6. doi: 10.1111/1523-1747.ep12613446
  53. Chekman IS, Syrovaya AO, Makarov VA, et al. Ozone and ozone therapy. No. 1. Kyiv-Kharkov: Tsifrovaya pechat'; 2013. 144 p. (In Russ.)
  54. Chelombitko EG, Gusakova EV. Systemic manifestations of post-Covid syndrome. Russ J Environmental Rehab Med. 2022;(3):48–60. EDN: ODNJGX

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change of antioxidant defence factor in groups of patients with eczema associated with metabolic syndrome under different correction schemes. БМТ ― basic medical therapy; ФТ ― phototherapy; МДМ ― mesodiencephalic modulation.

Download (40KB)

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».