THE FUNDAMENTALS OF A TWO-STAGE APPROACH TO SYSTEMATIC EARTHQUAKE PREDICTION
- 作者: Gitis V.G.1, Derendyaev A.B.2
-
隶属关系:
- Kharkevich Institute
- IITP RAS
- 期: 卷 25, 编号 3 (2025)
- 页面: ES3010
- 栏目: Articles
- URL: https://journals.rcsi.science/1681-1208/article/view/352551
- DOI: https://doi.org/10.2205/2025ES000987
- EDN: https://elibrary.ru/mfjoob
- ID: 352551
如何引用文章
全文:
详细
A systematic earthquake prediction is performed regularly at fixed intervals within a preselected seismically homogeneous zone. The result of each prediction iteration is a map highlighting the alarm zones, where the epicenters of target earthquakes are expected. The proposed methodology introduces the following innovations: 1 – A prediction is considered successful if all epicenters of the target earthquakes during the forecast interval fall within the alarm zone. 2 – The methodology optimizes both the probability of successfully detecting earthquake epicenters across a series of forecasts and the success rate of predictions in each individual iteration. 3 – The methodology enables the estimation of the probability of success for the next forecast interval. Examples of the method's application are demonstrated for predicting earthquakes in Kamchatka, California, and the island region of Japan.
作者简介
V. Gitis
Kharkevich Institute
Email: gitis@iitp.ru
ORCID iD: 0000-0003-1123-6433
SPIN 代码: 6361-3795
Scopus 作者 ID: 6601977219
Researcher ID: K-2526-2018
doctor of technical sciences
A. Derendyaev
IITP RAS
Email: wintsa@gmail.com
ORCID iD: 0000-0001-7063-6176
SPIN 代码: 6574-3955
Scopus 作者 ID: 36520735400
Researcher ID: AAS-1859-2021
Geoinformation technologies and systems, candidate of technical sciences
参考
Завьялов А. Д. Среднесрочный прогноз землетрясений: основы, методика, реализация. — Москва : Наука, 2006. — EDN: QKFPZD. Молчан Г. М. Оптимальные стратегии в прогнозе землетрясений. Современные методы интерпретации сейсмологических данных // Вычислительная сейсмология. — 1991. — Т. 24. — С. 3—18. Соболев Г. А. Основы прогноза землетрясений. — Москва : МАИК «Наука/Интерпериодика», 1993. — 313 с. — EDN: TGSIGH. Соболев Г. А., Пономарев A. В. Физика землетрясений и предвестники. — Москва : МАИК «Наука/Интерпериодика», 2003. — 270 с. — EDN: RVEBFL. Чебров В. Н., Дрознин Д. В., Кугаенко Ю. А. и др. Система детальных сейсмологических наблюдений на Камчатке в 2011 г. // Вулканология и сейсмология. — 2013. — № 1. — С. 18—40. — doi: 10.7868/s0203030613010021. Чеброва А. Ю., Чемарёв A. С., Матвеенко E. А. и др. Единая информационная система сейсмологических данных в Камчатском филиале ФИЦ ЕГС РАН: Принципы организации, основные элементы, ключевые функции // Геофизические исследования. — 2020. — Т. 21, № 3. — С. 66—91. — doi: 10.21455/gr2020.3-5. Amei A., Fu W., Ho C. H. Time series analysis for predicting the occurrences of large scale earthquakes // International Journal of Applied Science and Technology. — 2012. — Vol. 2, no. 7. Asim K. M., Idris A., Iqbal T., et al. Earthquake prediction model using support vector regressor and hybrid neural networks // PLOS ONE. — 2018. — Vol. 13, no. 7. — doi: 10.1371/journal.pone.0199004. Barnhart W. D., Hayes G. P., Wald D. J. Global Earthquake Response with Imaging Geodesy: Recent Examples from the USGS NEIC // Remote Sensing. — 2019. — Vol. 11, no. 11. — P. 1357. — doi: 10.3390/rs11111357. Blewitt G., Hammond W. C., Kreemer C. Harnessing the GPS Data Explosion for Interdisciplinary Science // Eos. — 2018. — Vol. 99. — P. 485. — doi: 10.1029/2018eo104623. Bradley A. P. The use of the area under the ROC curve in the evaluation of machine learning algorithms // Pattern Recognition. — 1997. — Vol. 30, no. 7. — P. 1145–1159. — doi: 10.1016/s0031-3203(96)00142-2. Corbi F., Sandri L., Bedford J., et al. Machine Learning Can Predict the Timing and Size of Analog Earthquakes // Geophysical Research Letters. — 2019. — Vol. 46, no. 3. — P. 1303–1311. — doi: 10.1029/2018gl081251. Gitis V., Derendyaev A. The Method of the Minimum Area of Alarm for Earthquake Magnitude Prediction // Frontiers in Earth Science. — 2020. — Vol. 11. — doi: 10.3389/feart.2020.585317. Gitis V., Derendyaev A. A Technology for Seismogenic Process Monitoring and Systematic Earthquake Forecasting // Remote Sensing. — 2023. — Vol. 15, no. 8. — P. 2171. — doi: 10.3390/rs15082171. Gitis V., Derendyaev A., Petrov K. Analyzing the Performance of GPS Data for Earthquake Prediction // Remote Sensing. — 2021. — Vol. 13, no. 9. — P. 1842. — doi: 10.3390/rs13091842. Gitis V. G., Derendyaev A. B., Pirogov S. A., et al. Adaptive estimation of seismic parameter fields from earthquake catalogs // Journal of Communications Technology and Electronics. — 2015. — Vol. 60, no. 12. — P. 1459–1465. — doi: 10.1134/s1064226915120098. Gitis V. G., Derendyaev A. B., Pirogov S. A., et al. Earthquake prediction using the fields estimated by an adaptive algorithm // Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics. — 2017. — P. 1–8. — doi: 10.1145/3102254.3102269. Kagan Y. Y. Earthquakes: Models, Statistics, Testable Forecasts. — Wiley, 2013. — doi: 10.1002/9781118637913. Kail R., Burnaev E., Zaytsev A. Recurrent Convolutional Neural Networks Help to Predict Location of Earthquakes // IEEE Geoscience and Remote Sensing Letters. — 2022. — Vol. 19. — P. 1–5. — doi: 10.1109/lgrs.2021.3107998. Kaplan S. M., McFall R. W. The Statistical Properties of Noise Applied to Radar Range Performance // Proceedings of the IRE. — 1951. — Vol. 39, no. 1. — P. 56–60. — doi: 10.1109/jrproc.1951.230422. King C. Y. Gas geochemistry applied to earthquake prediction: An overview // Journal of Geophysical Research: Solid Earth. — 1986. — Vol. 91, B12. — P. 12269–12281. — doi: 10.1029/jb091ib12p12269. Kossobokov V., Shebalin P. Earthquake Prediction // Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. — Berlin : Springer Berlin Heidelberg, 2003. — P. 141–207. — doi: 10.1007/978-3-662-05298-3_4. Lighthill J. A Critical Review of VAN: Earthquake Prediction from Seismic Electrical Signals. — Singapore : World Scientific, 1996. — doi: 10.1142/3006. Mignan A., Broccardo M. Neural Network Applications in Earthquake Prediction (1994-2019): Meta-Analytic and Statistical Insights on Their Limitations // Seismological Research Letters. — 2020. — Vol. 91, no. 4. — P. 2330– 2342. — doi: 10.1785/0220200021. Molchan G. Space-Time Earthquake Prediction: The Error Diagrams // Pure and Applied Geophysics. — 2010. — Vol. 167, no. 8/9. — P. 907–917. — doi: 10.1007/s00024-010-0087-z. Obara K., Kasahara K., Hori S., et al. A densely distributed high-sensitivity seismograph network in Japan: Hi-net by National Research Institute for Earth Science and Disaster Prevention // Review of Scientific Instruments. — 2005. — Vol. 76, no. 2. — doi: 10.1063/1.1854197. Okada Y., Kasahara K., Hori S., et al. Recent progress of seismic observation networks in Japan -Hi-net, F-net, K-NET and KiK-net- // Earth, Planets and Space. — 2014. — Vol. 56, no. 8. — P. 15–28. — doi: 10.1186/BF03353076. Panakkat A., Adeli H. Neural network models for earthquake magnitude prediction using multiple seismicity indicators // International Journal of Neural Systems. — 2007. — Vol. 17, no. 01. — P. 13–33. — doi: 10.1142/s0129065707000890. Rhoades D. A. Mixture Models for Improved Earthquake Forecasting with Short-to-Medium Time Horizons // Bulletin of the Seismological Society of America. — 2013. — Vol. 103, no. 4. — P. 2203–2215. — doi: 10.1785/0120120233. Shebalin P. N., Narteau C., Zechar J. D., et al. Combining earthquake forecasts using differential probability gains // Earth, Planets and Space. — 2014. — Vol. 66, no. 1. — P. 1–14. — doi: 10.1186/1880-5981-66-37. Soloviev A. A., Gvishiani A. D., Gorshkov A. I., et al. Recognition of earthquake-prone areas: Methodology and analysis of the results // Izvestiya, Physics of the Solid Earth. — 2014. — Vol. 50, no. 2. — P. 151–168. — doi: 10.1134/s1069351314020116.
补充文件



