MICROWAVE RADAR SENSING OF SEA WAVES: AN EFFECTIVE REFLECTION COEFFICIENT

Обложка

Цитировать

Полный текст

Аннотация

At the small incidence angles, the dominant backscattering mechanism for sea waves is the quasi-specular backscattering mechanism. The power of the reflected signal depends on the distribution function of the slopes of large-scale waves (in comparison with radar wavelength) and on the effective reflection coefficient, which is introduced instead of the Fresnel coefficient. In this paper, we discussed a new method for calculating the effective reflection coefficient from the wave scatterometer SWIM data. For the first time, measurements are performed by a radar at different azimuth angles at small incidence angles. This makes it possible to measure the effective reflection coefficient. An original algorithm was developed for data processing and determination of the total mean square slopes of large-scale sea waves and the azimuth dependence of the backscattering radar cross section at zero incidence angle. In the result of subsequent processing, the azimuth dependence of the effective reflection coefficient is retrieved. SWIM data were used to evaluate the developed algorithm. Processing of the test data set confirmed the efficiency of the algorithm. The azimuth anisotropy coefficients for the mean square slopes of large-scale waves and the effective reflection coefficient are calculated

Об авторах

V. Karaev

Email: volody@ipfran.ru
ORCID iD: 0000-0002-4054-4905

M. Panfilova

Email: volody@ipfran.ru
ORCID iD: 0000-0002-3795-0347

Yu. Titchenko

Email: volody@ipfran.ru
ORCID iD: 0000-0001-7762-7731

E. Meshkov

Email: volody@ipfran.ru
ORCID iD: 0000-0002-5353-7528

D. Kovaldov

Email: volody@ipfran.ru
ORCID iD: 0000-0002-9535-4949

Li Xiuzhong

Email: volody@ipfran.ru
ORCID iD: 0000-0002-4741-2999

He Yijun

Автор, ответственный за переписку.
Email: volody@ipfran.ru
ORCID iD: 0000-0002-1531-5262

Список литературы

  1. Bass, F. G., and I. M. Fuks (1979), Wave Scattering from Statistically Rough Surfaces, 528 pp., Elsevier, https://doi.org/10.1 016/c2013-0-05724-6.
  2. Chen, P., G. Zheng, D. Hauser, and F. Xu (2018), Quasi-Gaussian probability density function of sea wave slopes from near nadir Ku-band radar observations, Remote Sensing of Environment, 217, 86–100, https://doi.org/10.1016/j.rse.2018.07.027.
  3. Chu, X., Y. He, and G. Chen (2012), Asymmetry and Anisotropy of Microwave Backscatter at Low Incidence Angles, IEEE Transactions on Geoscience and Remote Sensing, 50(10), 4014–4024, https://doi.org/10.1109/tgrs.2012.2189010.
  4. Freilich, M. H., and B. A. Vanhoff (2003), The Relationship between Winds, Surface Roughness, and Radar Backscatter at Low Incidence Angles from TRMM Precipitation Radar Measurements, Journal of Atmospheric and Oceanic Technology, 20(4), 549–562, https://doi.org/10.1175/1520-0426(2003)20%3C549:TRBWSR%3E2.0.CO;2.
  5. Hauser, D., G. Caudal, S. Guimbard, and A. A. Mouche (2008), A study of the slope probability density function of the ocean waves from radar observations, Journal of Geophysical Research, 113(C2), https://doi.org/10.1029/2007jc004264.
  6. Hauser, D., C. Tison, T. Amiot, L. Delaye, N. Corcoral, and P. Castillan (2017), SWIM: The First Spaceborne Wave Scatterometer, IEEE Transactions on Geoscience and Remote Sensing, 55(5), 3000–3014, https://doi.org/10.1109/tgrs.2017.2658672
  7. Hauser, D., C. Tourain, L. Hermozo, D. Alraddawi, L. Aouf, B. Chapron, A. Dalphinet, L. Delaye, M. Dalila, E. Dormy, F. Gouillon, V. Gressani, A. Grouazel, G. Guitton, R. Husson, A. Mironov, A. Mouche, A. Ollivier, L. Oruba, F. Piras, R. R. Suquet, P. Schippers, C. Tison, and N. Tran (2021), New Observations From the SWIM Radar On-Board CFOSAT: Instrument Validation and Ocean Wave Measurement Assessment, IEEE Transactions on Geoscience and Remote Sensing, 59(1), 5–26, https://doi.org/10.1109/tgrs.2020.2994372.
  8. Karaev, V. Y., M. A. Panfilova, M. S. Ryabkova, Y. A. Titchenko, E. M. Meshkov, and X. Li (2021), Retrieval of the two-dimensional slope field by the SWIM spectrometer of the CFOSAT satellite: discussion of the algorithm, Russian Journal of Earth Sciences, 21(6), 1–9, https://doi.org/10.2205/2021es000784.
  9. Li, X., V. Karaev, M. Panfilova, B. Liu, Z. Wang, Y. Xu, J. Liu, and Y. He (2022a), Measurements of Total Sea Surface Mean Square Slope Field Based on SWIM Data, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–9, https: //doi.org/10.1109/tgrs.2022.3174392.
  10. Li, X., W. Lin, B. Liu, Z. Wang, B. Zhang, and Y. He (2022b), Sea Surface Wind Retrieval Using the Combined Scatterometer and Altimeter Backscatter Measurements of the HY-2B Satellite, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–12, https://doi.org/10.1109/tgrs.2021.3065663.
  11. Lin, C.-C., M. Betto, M. B. Rivas, A. Stoffelen, and J. de Kloe (2012), EPS-SG Windscatterometer Concept Tradeoffs and Wind Retrieval Performance Assessment, IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2458–2472, https://doi.org/10.1109/tgrs.2011.2180393.
  12. Masuko, H., K. Okamoto, M. Shimada, and S. Niwa (1986), Measurement of microwave backscattering signatures of the ocean surface using X-band and Ka-band airborne scatterometers, Journal of Geophysical Research, 91(C11), 13,065, https://doi.org/10.1029/jc091ic11p13065.
  13. Panfilova, M., V. Karaev, L. Mitnik, Y. Titchenko, M. Ryabkova, and E. Meshkov (2020), Advanced View at the Ocean Surface, Journal of Geophysical Research: Oceans, 125(11), https://doi.org/10.1029/2020jc016531.
  14. Valenzuela, G. R. (1978), Theories for the interaction of electromagnetic and oceanic waves – A review, Boundary-Layer Meteorology, 13(1-4), 61–85, https://doi.org/10.1007/bf00913863.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Karaev V., Panfilova M., Titchenko Y., Meshkov E., Kovaldov D., Xiuzhong L., Yijun H., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».