MICROWAVE RADAR SENSING OF SEA WAVES: AN EFFECTIVE REFLECTION COEFFICIENT

Capa

Citar

Texto integral

Sobre autores

V. Karaev

Institute of Applied Physics of the Russian Academy of Sciences

Email: volody@ipfran.ru
ORCID ID: 0000-0002-4054-4905

M. Panfilova

Institute of Applied Physics of the Russian Academy of Sciences

Email: volody@ipfran.ru
ORCID ID: 0000-0002-3795-0347

Yu. Titchenko

Institute of Applied Physics of the Russian Academy of Sciences

Email: volody@ipfran.ru
ORCID ID: 0000-0001-7762-7731

E. Meshkov

Institute of Applied Physics of the Russian Academy of Sciences

Email: volody@ipfran.ru
ORCID ID: 0000-0002-5353-7528

D. Kovaldov

Institute of Applied Physics of the Russian Academy of Sciences

Email: volody@ipfran.ru
ORCID ID: 0000-0002-9535-4949

Li Xiuzhong

School of Marine Sciences, Nanjing University of Information Science and Technology

Email: volody@ipfran.ru
ORCID ID: 0000-0002-4741-2999

He Yijun

School of Marine Sciences, Nanjing University of Information Science and Technology

Autor responsável pela correspondência
Email: volody@ipfran.ru
ORCID ID: 0000-0002-1531-5262

Bibliografia

  1. Bass, F. G., and I. M. Fuks (1979), Wave Scattering from Statistically Rough Surfaces, 528 pp., Elsevier, https://doi.org/10.1 016/c2013-0-05724-6.
  2. Chen, P., G. Zheng, D. Hauser, and F. Xu (2018), Quasi-Gaussian probability density function of sea wave slopes from near nadir Ku-band radar observations, Remote Sensing of Environment, 217, 86–100, https://doi.org/10.1016/j.rse.2018.07.027.
  3. Chu, X., Y. He, and G. Chen (2012), Asymmetry and Anisotropy of Microwave Backscatter at Low Incidence Angles, IEEE Transactions on Geoscience and Remote Sensing, 50(10), 4014–4024, https://doi.org/10.1109/tgrs.2012.2189010.
  4. Freilich, M. H., and B. A. Vanhoff (2003), The Relationship between Winds, Surface Roughness, and Radar Backscatter at Low Incidence Angles from TRMM Precipitation Radar Measurements, Journal of Atmospheric and Oceanic Technology, 20(4), 549–562, https://doi.org/10.1175/1520-0426(2003)20%3C549:TRBWSR%3E2.0.CO;2.
  5. Hauser, D., G. Caudal, S. Guimbard, and A. A. Mouche (2008), A study of the slope probability density function of the ocean waves from radar observations, Journal of Geophysical Research, 113(C2), https://doi.org/10.1029/2007jc004264.
  6. Hauser, D., C. Tison, T. Amiot, L. Delaye, N. Corcoral, and P. Castillan (2017), SWIM: The First Spaceborne Wave Scatterometer, IEEE Transactions on Geoscience and Remote Sensing, 55(5), 3000–3014, https://doi.org/10.1109/tgrs.2017.2658672
  7. Hauser, D., C. Tourain, L. Hermozo, D. Alraddawi, L. Aouf, B. Chapron, A. Dalphinet, L. Delaye, M. Dalila, E. Dormy, F. Gouillon, V. Gressani, A. Grouazel, G. Guitton, R. Husson, A. Mironov, A. Mouche, A. Ollivier, L. Oruba, F. Piras, R. R. Suquet, P. Schippers, C. Tison, and N. Tran (2021), New Observations From the SWIM Radar On-Board CFOSAT: Instrument Validation and Ocean Wave Measurement Assessment, IEEE Transactions on Geoscience and Remote Sensing, 59(1), 5–26, https://doi.org/10.1109/tgrs.2020.2994372.
  8. Karaev, V. Y., M. A. Panfilova, M. S. Ryabkova, Y. A. Titchenko, E. M. Meshkov, and X. Li (2021), Retrieval of the two-dimensional slope field by the SWIM spectrometer of the CFOSAT satellite: discussion of the algorithm, Russian Journal of Earth Sciences, 21(6), 1–9, https://doi.org/10.2205/2021es000784.
  9. Li, X., V. Karaev, M. Panfilova, B. Liu, Z. Wang, Y. Xu, J. Liu, and Y. He (2022a), Measurements of Total Sea Surface Mean Square Slope Field Based on SWIM Data, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–9, https: //doi.org/10.1109/tgrs.2022.3174392.
  10. Li, X., W. Lin, B. Liu, Z. Wang, B. Zhang, and Y. He (2022b), Sea Surface Wind Retrieval Using the Combined Scatterometer and Altimeter Backscatter Measurements of the HY-2B Satellite, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–12, https://doi.org/10.1109/tgrs.2021.3065663.
  11. Lin, C.-C., M. Betto, M. B. Rivas, A. Stoffelen, and J. de Kloe (2012), EPS-SG Windscatterometer Concept Tradeoffs and Wind Retrieval Performance Assessment, IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2458–2472, https://doi.org/10.1109/tgrs.2011.2180393.
  12. Masuko, H., K. Okamoto, M. Shimada, and S. Niwa (1986), Measurement of microwave backscattering signatures of the ocean surface using X-band and Ka-band airborne scatterometers, Journal of Geophysical Research, 91(C11), 13,065, https://doi.org/10.1029/jc091ic11p13065.
  13. Panfilova, M., V. Karaev, L. Mitnik, Y. Titchenko, M. Ryabkova, and E. Meshkov (2020), Advanced View at the Ocean Surface, Journal of Geophysical Research: Oceans, 125(11), https://doi.org/10.1029/2020jc016531.
  14. Valenzuela, G. R. (1978), Theories for the interaction of electromagnetic and oceanic waves – A review, Boundary-Layer Meteorology, 13(1-4), 61–85, https://doi.org/10.1007/bf00913863.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Karaev V., Panfilova M., Titchenko Y., Meshkov E., Kovaldov D., Xiuzhong L., Yijun H., 2023

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.