METHOD FOR DETECTION OF FORBUSH EFFECTS IN COSMIC RAY FLUX ACCORDING TO NEUTRON MONITORS DATA USING WAVELET TRANSFORM

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The method developed by the authors for detection of Forbush effects in cosmic ray variations based on ground data of neutron monitors is presented. The method is based on the synthesis of the classical theory of risks with nonlinear approximating schemes in wavelet bases. The basis of the method are the rules composed by the authors. Numerical realization of the developed rules makes it possible to obtain a solution close to optimal without pre-training in near real-time mode. On the example of periods of extreme magnetic storms in 2024, method results confirming its efficiency are illustrated. General anomalous dynamics of the cosmic ray flux is distinguished. Anomalous changes, preceding the beginnings of the events under analysis, were discovered. The observed correlation with the changes of interplanetary environment parameters indicates the reliability of the obrained results.

Авторлар туралы

O. Mandrikova

Institute of Cosmophysical Research and Radio Wave Propagation, FEB RAS

Email: oksanam1@mail.ru
ORCID iD: 0000-0002-6172-1827

B. Mandrikova

Institute of Cosmophysical Research and Radio Wave Propagation, FEB RAS

ORCID iD: 0009-0006-8027-378X

Әдебиет тізімі

  1. Badruddin B., Aslam O. P. M., Derouich M., et al. Forbush Decreases and Geomagnetic Storms During a Highly Disturbed Solar and Interplanetary Period, 4–10 September 2017 // Space Weather. — 2019. — Vol. 17, no. 3. — P. 487–496. — doi: 10.1029/2018sw001941.
  2. Belov A. V., Eroshenko E. A., Yanke V. G., et al. Global Survey Method for the World Network of Neutron Monitors // Geomagnetism and Aeronomy. — 2018. — Vol. 58, no. 3. — P. 356–372. — doi: 10.1134/S0016793218030039.
  3. Borog V. V., Kryanev A. V., Udumyan D. K. Combined method for detecting hidden anomalies in galactic cosmic ray variations // Geomagnetism and Aeronomy. — 2011. — Vol. 51, no. 4. — P. 475–482. — doi: 10.1134/s0016793211040086.
  4. Dorman L. I. Space weather and dangerous phenomena on the Earth: principles of great geomagnetic storms forcasting by online cosmic ray data // Annales Geophysicae. — 2005. — Vol. 23, no. 9. — P. 2997–3002. — doi: 10.5194/angeo23-2997-2005.
  5. Getmanov V. G., Gvishiani A. D., Soloviev A. A. Methods of digital processing of matrix time series of observations of muon fluxes for geophysical research. — Moscow : RAS, 2023. — 184 p. — (In Russian).
  6. Getmanov V. G., Gvishiani A. D., Soloviev A. A., et al. Recognition of geomagnetic storms from time series of matrix observations with the muon hodoscope URAGAN using neural networks of deep learning // Solar-Terrestrial Physics. — 2024. — Vol. 10, issue 1, no. 1. — P. 76–83. — doi: 10.12737/stp-101202411.
  7. Kalashev O., Pshirkov M., Zotov M. Identifying nearby sources of ultra-high-energy cosmic rays with deep learning // Journal of Cosmology and Astroparticle Physics. — 2020. — No. 11. — doi: 10.1088/1475-7516/2020/11/005.
  8. Kovylyaeva A. A., Astapov I. I., Barbashina N. S., et al. Investigating Characteristics of Forbush Effects Recorded by the URAGAN Muon Hodoscope in the Period 2012–2017 // Bulletin of the Russian Academy of Sciences: Physics. — 2019. — Vol. 83, no. 5. — P. 563–565. — doi: 10.3103/s1062873819050174. — (In Russian).
  9. Krymsky G. F., Altukhov A. M., Kuzmin A. I. — Moscow : New method for studying the anisotropy of cosmic rays. Research on geomagnetism, aeronomy, 1966. — 105 p. — (In Russian).
  10. Kuznetsov V. D. Space weather and risks of space activity // Space technique and technologies. — 2014. — Vol. 3. — P. 3–13. — EDN: TEMDOH. (In Russian).
  11. Levin B. R. Theoretical Foundations of Statistical Radio Engineering. — Moscow, Russia : Radio i Svyaz’, 1989. — (In Russian).
  12. Lukovenkova O. O., V. M. Y., Tristanov A. B., et al. Optimization of adaptive matching pursuit method to analyze geoacoustic emission signals // Vestnik KRAUNC. Fiziko-matematiceskie nauki. — 2018. — Vol. 24, no. 4. — P. 197–207. — doi: 10.18454/2079-6641-2018-24-4-197-207.
  13. Mallat S. A Wavelet Tour of Signal Processing. — London, UK : Academic Press, 1999. — 620 p.
  14. Mandrikova O., Zalyaev T. Modeling of cosmic ray variations based on combining multiscale wavelet decompositions and variable structure neural networks // Digital signal processing. — 2015. — Vol. 1. — P. 11–16. — EDN: TSNQIP. (In Russian).
  15. Mandrikova O., Mandrikova B. Method of Wavelet-Decomposition to Research Cosmic Ray Variations: Application in Space Weather // Symmetry. — 2021. — Vol. 13, no. 12. — doi: 10.3390/sym13122313.
  16. Mandrikova O., Mandrikova B. Hybrid Model of Natural Time Series with Neural Network Component and Adaptive Nonlinear Scheme: Application for Anomaly Detection // Mathematics. — 2024. — Vol. 12, no. 7. — P. 1079. — doi: 10.3390/math12071079.
  17. Mandrikova O. Intelligent methods for natural data analysis: application to space weather // Computer Optics. — 2024. — Vol. 48, no. 1. — P. 139–148. — doi: 10.18287/2412-6179-CO-1367.
  18. Real-Time Database for high-resolution Neutron Monitor measurements / NMDB: the Neutron Monitor Database. — URL: https://www.nmdb.eu (visited on 11/11/2024).
  19. Rycroft M. J. J.Lilensten (ed.), Space weather: research towards applications in Europe, Astrophysics and space science library. Book Review // Surveys in Geophysics. — 2007. — Vol. 28, no. 1. — P. 115–116. — doi: 10.1007/s10712-007-9015-x.
  20. Zhu X.-L., Xue B.-S., Cheng G.-S., et al. Application of wavelet analysis of cosmic ray in prediction of great geomagnetic storms // Chinese Journal of Geophysics (Acta Geophysica Sinica). — 2015. — Vol. 58. — P. 2242–2249. — doi: 10.6038/cjg20150703.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Mandrikova O., Mandrikova B., 2025

Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.