MONITORING THE CONTENT OF POLYCYCLIC AROMATIC HYDROCARBONS IN SOILS AND NATURAL HERBAL VEGETATION OF TECHNOGENEOUSLY POLLUTED TERRITORY

Capa

Citar

Texto integral

Sobre autores

A. Barbashev

Southern Federal University

Email: rjes@gcras.ru
ORCID ID: 0000-0003-1857-948X

S. Sushkova

Southern Federal University

Email: rjes@gcras.ru
ORCID ID: 0000-0003-3470-9627

T. Dudnikova

Southern Federal University

Email: rjes@gcras.ru
ORCID ID: 0000-0002-8436-0198

T. Minkina

Southern Federal University

Email: rjes@gcras.ru
ORCID ID: 0000-0003-3022-0883

V. Popov

Southern Federal University

Autor responsável pela correspondência
Email: rjes@gcras.ru
ORCID ID: 0009-0002-2481-5346

Bibliografia

  1. Abdel-Shafy, H. I., and M. S. M. Mansour (2016), A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation, Egyptian Journal of Petroleum, 25(1), 107–123, https://doi.org/10.1016/j.ejpe.2015.03.011.
  2. Chai, C., Q. Cheng, J. Wu, L. Zeng, Q. Chen, X. Zhu, D. Ma, and W. Ge (2017), Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in the soils of vegetable greenhouses in Shandong, China, Ecotoxicology and Environmental Safety, 142, 181–188, https://doi.org/10.1016/j.ecoenv.2017.04.014.
  3. Cristale, J., F. S. Silva, G. J. Zocolo, and M. R. R. Marchi (2012), Influence of sugarcane burning on indoor/outdoor PAH air pollution in Brazil, Environmental Pollution, 169, 210–216, https://doi.org/10.1016/j.envpol.2012.03.045.
  4. GN 2.1.7.2041-06 (2006), Maximum Permissible Concentrations (MPC) and Estimated Permissible Concentrations (APC) of chemicals in soil: Hygienic standards (in Russian).
  5. GOST 17.4.3.01-2017 (2019), Nature protection. Soils. General requirement for sampling (in Russian).
  6. Kołtowski, M., I. Hilber, T. D. Bucheli, and P. Oleszczuk (2016), Effect of activated carbon and biochars on the bioavailability of polycyclic aromatic hydrocarbons in different industrially contaminated soils, Environmental Science and Pollution Research, 23(11), 11,058–11,068, https://doi.org/10.1007/s11356-016-6196-1.
  7. Kotoky, R., and P. Pandey (2018), Plant-microbe Symbiosis as an Instrument for the Mobilization and Removal of Heavy Metals from Contaminated Soils - A Realistic Approach, Current Biotechnology, 7(2), 71–79, https://doi.org/10.2174/2211550106666170321104354.
  8. Kumar, S. S., A. Kadier, S. K. Malyan, A. Ahmad, and N. R. Bishnoi (2017), Phytoremediation and Rhizoremediation: Uptake, Mobilization and Sequestration of Heavy Metals by Plants, in Plant-Microbe Interactions in Agro-Ecological Perspectives, pp. 367–394, Springer Singapore, https://doi.org/10.1007/978-981-10-6593-4_15.
  9. Kuppusamy, S., P. Thavamani, K. Venkateswarlu, Y. B. Lee, R. Naidu, and M. Megharaj (2017), Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions, Chemosphere, 168, 944–968, https://doi.org/10.1016/j.chemosphere.2016.10.115.
  10. Medunić, G., M. Ahel, I. B. Mihalić, V. G. Srček, N. Kopjar, Ž. Fiket, T. Bituh, and I. Mikac (2016), Toxic airborne S, PAH, and trace element legacy of the superhigh-organic-sulphur Raša coal combustion: Cytotoxicity and genotoxicity assessment of soil and ash, Science of The Total Environment, 566-567, 306–319, https://doi.org/10.1016/j.scitotenv.2016.05.096.
  11. Sasse, J., E. Martinoia, and T. Northen (2018), Feed Your Friends: Do Plant Exudates Shape the Root Microbiome?, Trends in Plant Science, 23(1), 25–41, https://doi.org/10.1016/j.tplants.2017.09.003.
  12. Sushkova, S. N., G. K. Vasilyeva, T. M. Minkina, S. S. Mandzhieva, I. G. Tjurina, S. I. Kolesnikov, R. Kizilkaya, and T. Askin (2014), New method for benzo[a]pyrene analysis in plant material using subcritical water extraction, Journal of Geochemical Exploration, 144, 267–272, https://doi.org/10.1016/j.gexplo.2014.02.018.
  13. Sushkova, S. N., T. M. Minkina, S. S. Mandzhieva, G. K. Vasilyeva, N. I. Borisenko, I. G. Turina, O. V. Bolotova, T. V. Varduni, and R. Kızılkaya (2015), New alternative method of benzo[a]pyrene extractionfrom soils and its approbation in soil under technogenic pressure, Journal of Soils and Sediments, 16(4), 1323–1329, https://doi.org/10.1007/s11368-015-1104-8.
  14. Tobiszewski, M., and J. Namieśnik (2012), PAH diagnostic ratios for the identification of pollution emission sources, Environmental Pollution, 162, 110–119, https://doi.org/10.1016/j.envpol.2011.10.025.
  15. Tsibart, A. S., and A. N. Gennadiev (2013), Polycyclic Aromatic Hydrocarbons in Soils: Sources, Behavior, Indicative Value (A Review), Pochvovedenie, 7, 788–802, https://doi.org/10.7868/S0032180X13070125 (in Russian).
  16. US Environmental Protection Agency (2020), Integrated Risk Information System (IRIS), https://cfpub.epa.gov/ncea/iris_drafts/AtoZ.cfm, (date of access 10.07.2023).
  17. Wood, J. L., C. Tang, and A. E. Franks (2016), Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils, Soil Biology and Biochemistry, 103, 131–137, https://doi.org/10.1016/j.soilbio.2016.08.021.
  18. Yakovleva, E. V., V. A. Beznosikov, B. M. Kondratenok, D. N. Gabov, and M. I. Vasilevich (2008), Bioaccumulation of polycyclic aromatic hydrocarbons in the soil-plant system, Agrochemistry, 9, 66–74 (in Russian).
  19. Yunker, M. B., A. Perreault, and C. J. Lowe (2012), Source apportionment of elevated PAH concentrations in sediments near deep marine outfalls in Esquimalt and Victoria, BC, Canada: Is coal from an 1891 shipwreck the source?, Organic Geochemistry, 46, 12–37, https://doi.org/10.1016/j.orggeochem.2012.01.006.

Declaração de direitos autorais © Barbashev A., Sushkova S., Dudnikova T., Minkina T., Popov V., 2023

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies