JURASSIC AND CRETACEOUS GLENDONITES OF THE NOVOYAKIMOVSKAYA-1 BOREHOLE (WESTERN TAIMYR): AGE, MORPHOLOGY, DEPOSITIONAL SETTINGS AND ALTERATIONS OF MINERAL COMPOSITION

Capa

Citar

Texto integral

Resumo

According to biostratigraphic data, Bathonian and Callovian (Malyshevka and Tochinskoe Formations), Oxfordian (Sigovoe Formation), Volgian and Ryazanian (Yanov Stan Formation), Valanginian and Hauterivian (Sukhaya Dudinka Formation) stages were recognized in the core of Novoyakimovskaya-1 well. Characteristic species of mollusks from the Bathonian–Hauterivian are figured. For the first time, members previously established in the Bazhenovo Formation and the Lower Tutleim Subformation were traced into the Yanov Stan Formation. All studied formations except for Malyshevka Formation contain glendonites. Glendonites are pseudomorphs after cold-water mineral ikaite and can be used as indicators of cold water paleoenvironments. The size of glendonites varies from a few to 9–10 cm. Glendonites are morphologically diverse, however, no patterns in the distribution of glendonites of different shapes across the section are noted. Glendonites are abundant in the lower part of the section (Bathonian and Callovian stages), but their number decreases up the section. The stratigraphic distribution of glendonites is compared with the stages of climate cooling in the Arctic region. All studied glendonites are composed of two types of calcite; this feature is stable for glendonites of different ages and can be used for microscopic identification of glendonites.

Sobre autores

M. Rogov

Geological Institute of Russian Academy of Sciences; Aprelevka branch of the All-Russian Research Geological Oil Institute (VNIGNI)

ORCID ID: 0000-0002-3302-4709
Código SPIN: 4825-7809
Scopus Author ID: 9535891600
professor Russian Academy of Sciences, doctor of geological and mineralogical sciences

K. Vasileva

Geological Institute of RAS; Institute of Earth Sciences, Saint-Petersburg State University

ORCID ID: 0000-0001-7766-5674

K. Olenova

Aprelevka branch of the All-Russian Research Geological Oil Institute (VNIGNI)

V. Zakharov

Geological Institute of RAS

ORCID ID: 0000-0002-4506-824X

A. Ippolitov

Geological Institute of RAS; Victoria University of Wellington | Te Herenga Waka

ORCID ID: 0000-0003-1612-0376

O. Lutikov

Geological Institute of Russian Academy of Sciences; Aprelevka Branch of the All-Russian Research Geological Oil Institute

Email: niipss@mail.ru
ORCID ID: 0009-0006-6029-2545

I. Panchenko

Geological Institute of RAS; JSC MiMGO

ORCID ID: 0000-0003-2661-875X

D. Kiselev

Aprelevka branch of the All-Russian Research Geological Oil Institute (VNIGNI); Yaroslavl State Pedagogical University named after K.D.Ushinsky

ORCID ID: 0000-0001-9425-2759

Bibliografia

  1. Allen P. A. and Allen J. R. Basin analysis: principles and applications. — 2nd. — Malden, Oxford : Wiley, 2005. — 549 p.
  2. Baybarodskikh N. I., Bro E. G., Gudkova S. A., et al. Subdivision of Jurassic and Cretaceous deposits in the sections of wells drilled in the Ust-Yenisei syneclise in years 1962-1967 // Scientific Notes of NIIGA. Regional Geology. — 1968. — Vol. 12. — P. 5–24. — (In Russian).
  3. Borisov E. V. Issues of correlation and indexation of productive LPG strata of the Sigovskaya Formaton in the western part of the Yenisei-Khatanga Regional Trough // Geology and mineral resources of Siberia. — 2019. — No. 4. — P. 67–79. — https://doi.org/10.20403/2078-0575-2019-4-67-79.
  4. Efremenko V. D., Dzyuba O. S., Shurygin B. N., et al. Boreal-Tethyan correlation of the upper Berriasian-Valanginian: contribution of new 13C and 87Sr/86Sr chemostratigraphic data from Arctic Siberia // Russian Geology and Geophysics. — 2025. — Vol. 66, no. 2. — P. 160–176. — https://doi.org/10.2113/rgg20244778.
  5. Imlay R. W. Stratigraphic and Geographic Range of the Early Cretaceous Ammonite Homolsomites // Journal of Paleontology. — 1956. — Vol. 30, no. 5. — P. 1143–1146.
  6. Kiselev D. N. Ammonites and infrazonal stratigraphy of the boreal and subboreal Bathonian and Callovian // Transactions of the Geological Institute. — 2022. — No. 628. — P. 7–525. — https://doi.org/10.54896/00023272_2021_628_1. — (In Russian).
  7. Kontorovich A. E., Ershov S. V., Kazanenkov V. A., et al. Cretaceous paleogeography of the West Siberian sedimentary basin // Russian Geology and Geophysics. — 2014. — Vol. 55, no. 5/6. — P. 582–609. — https://doi.org/10.1016/j.rgg.2014.05.005.
  8. Kontorovich A. E., Kontorovich V. A., Ryzhkova S. V., et al. Jurassic paleogeography of the West Siberian sedimentary basin // Russian Geology and Geophysics. — 2013. — Vol. 54, no. 8. — P. 747–779. — https://doi.org/10.1016/j.rgg.2013.07.002.
  9. Mesezhnikov M. S., Kalacheva E. D. and Rotkite L. M. Zonal subdivision of the Middle and Upper Oxfordian of the Russian Platform based on ammonites // Transactions of Interdepartmental Stratigraphic Committee. — 1989. — P. 35–43. — (In Russian).
  10. Muramiya Y., Yoshida H., Minami M., et al. Glendonite concretion formation due to dead organism decomposition // Sedimentary Geology. — 2022. — Vol. 429. — P. 106075. — https://doi.org/10.1016/j.sedgeo.2021.106075.
  11. Nordt L., Breecker D. and White J. The early Cretaceous was cold but punctuated by warm snaps resulting from episodic volcanism // Communications Earth & Environment. — 2024. — Vol. 5, no. 1. — https://doi.org/10.1038/s43247-024-01389-5.
  12. Olenova K. Yu., Agakhanova V. A. and Vaganova A. A. Void space of glendonites in Middle Jurassic–Lower Cretaceous deposits in the section of the parametric well Novoyakimovskaya-1 (Western Taimyr) // Exolith. Frolov’s pioneering lithology: general and particular: Annual Meeting (scientific readings) dedicated to the 100th anniversary of Vladimir Tikhonovich Frolov. — MAKS-PRESS, 2023. — P. 136–139. — (In Russian).
  13. Panchenko I. V. Event-stratigraphic levels of the Upper Jurassic–Lower Cretaceous black shale strata of Western Siberia. — CJSC ”Modeling, Monitoring of Geological Objects named after V.A. Dvurechensky”, 2023. — 278 p. — (In Russian).
  14. Panchenko I. V., Balushkina N. S., Baraboshkin E. Yu., et al. Complexes of paleobiota in Abalak-Bazhenov deposits in the central part of Western Siberia // Neftegazovaya Geologiya. Teoriya I Praktika. — 2015. — Vol. 10, no. 2. — https://doi.org/10.17353/2070-5379/24_2015. — (In Russian).
  15. Panchenko I. V., Rogov M. A., Sobolev I. D., et al. Tephrostratigraphy of Jurassic-Cretaceous boundary beds of Western Siberia // Russian Journal of Earth Sciences. — 2022. — No. 6. — ES6014. — https://doi.org/10.2205/2022es000817. — (In Russian).
  16. Price G. D. The evidence and implications of polar ice during the Mesozoic // Earth-Science Reviews. — 1999. — Vol. 48, no. 3. — P. 183–210. — https://doi.org/10.1016/s0012-8252(99)00048-3.
  17. Rogov M., Ershova V., Gaina C., et al. Glendonites throughout the Phanerozoic // Earth-Science Reviews. — 2023. — Vol. 241. — P. 104430. — https://doi.org/10.1016/j.earscirev.2023.104430.
  18. Rogov M. A., Zakharov V. A., Solovyov A. V., et al. The Volgian and Ryazanian in the Novoyakimovskaya-1 Well (Western Yenisei-Khatanga Regional Trough, Siberia). Article 1. The General Characteristics of the Yanov Stan Formation and Its Molluscan Biostratigraphy // Stratigraphy and Geological Correlation. — 2024. — Vol. 32, no. 3. — P. 294–316. — https://doi.org/10.1134/s0869593824030067.
  19. Rogov M. A., Zverkov N. G., Zakharov V. A., et al. Marine Reptiles and Climates of the Jurassic and Cretaceous of Siberia // Stratigraphy and Geological Correlation. — 2019. — Vol. 27, no. 4. — P. 398–423. — https://doi.org/10.1134/s0869593819040051.
  20. Satori G. and Schmidt M. W. Phosphorous-solubility in carbonatite melts: Apatite crystallization modeled via its solubility product // Geochimica et Cosmochimica Acta. — 2023. — Vol. 352. — P. 122–132. — https://doi.org/10.1016/j.gca.2023.04.034.
  21. Skvortsov M. B., Obukhov A. N., Kirsanov A. M., et al. Petroleum potential of the central part of Yenisei-Khatanga Trough: the results of deep stratigraphic drilling // Geologiya nefti i gaza. — 2025. — No. 6. — P. 5–14. — https://doi.org/10.47148/0016-7894-2024-6-5-14. — (In Russian).
  22. Suess E., Balzer W., Hesse K., et al. Calcium Carbonate Hexahydrate from Organic-Rich Sediments of the Antarctic Shelf: Precursors of Glendonites // Science. — 1982. — Vol. 216, no. 4550. — P. 1128–1131. — https://doi.org/10.1126/science.216.4550.1128.
  23. Sykes R. M. and Callomon J. H. The Amoeboceras zonation of the Boreal Upper Oxfordian // Palaeontology. — 1979. — Vol. 22, no. 4. — P. 839–903.
  24. Vasileva K., Vereshchagin O., Ershova V., et al. Marine diagenesis of ikaite: Implications from the isotopic and geochemical composition of glendonites and host concretions (Palaeogene-Neogene sediments, Sakhalin Island) // Sedimentology. — 2021. — Vol. 68, no. 5. — P. 2227–2251. — https://doi.org/10.1111/sed.12847.
  25. Vasileva K. Yu., Rogov M. A., Panchenko I. V., et al. The First Finds of Glendonites in the Upper Jurassic-Lower Cretaceous Bazhenovo Formation (West Siberia, Frolovskaya Megadepression) and Their Paleogeographic Significance // Moscow University Geology Bulletin. — 2025. — Vol. 80, no. 1. — P. 38–46. — https://doi.org/10.3103/s0145875225700140.
  26. Vickers M., Watkinson M., Price G. D., et al. An improved model for the ikaite-glendonite transformation: evidence from the Lower Cretaceous of Spitsbergen, Svalbard // Norwegian Journal of Geology. — 2018. — https://doi.org/10.17850/njg98-1-01.
  27. Vickers M. L., Jelby M. E., Blok C. N., et al. Early Cretaceous giant glendonites: A record of (sub-)millennial-scale cooling? // Palaeogeography, Palaeoclimatology, Palaeoecology. — 2025. — Vol. 661. — P. 112739. — https://doi.org/10.1016/j.palaeo.2025.112739.
  28. Wang Z., Chen C., Wang J., et al. Wide but not ubiquitous distribution of glendonite in the Doushantuo Formation, South China: Implications for Ediacaran climate // Precambrian Research. — 2020. — Vol. 338. — P. 105586. — https://doi.org/10.1016/j.precamres.2019.105586.
  29. Whiticar M. J., Suess E., Wefer G., et al. Calcium Carbonate Hexahydrate (Ikaite): History of Mineral Formation as Recorded by Stable Isotopes // Minerals. — 2022. — Vol. 12, no. 12. — P. 1627. — https://doi.org/10.3390/min12121627.
  30. Williscroft K., Grasby S. E., Beauchamp B., et al. Extensive Early Cretaceous (Albian) methane seepage on Ellef Ringnes Island, Canadian High Arctic // Geological Society of America Bulletin. — 2017. — Vol. 129, no. 7/8. — P. 788–805. — https://doi.org/10.1130/b31601.1.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Rogov M., Vasileva K., Olenova K., Zakharov V., Ippolitov A., Lutikov O., Panchenko I., Kiselev D., 2025

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.