FRACTAL CHARACTERISTICS OF THE AURORAL OVAL STRUCTURE ACCORDING TO THE ALL-SKY CAMERA DATA IN APATITY FOR 2013–2020

封面

如何引用文章

全文:

详细

The spatial structure of polar auroras is described by the fractal dimension of glow fluctuations and its anisotropy from direction. The fractal dimension is estimated from the slope in the logarithmic axes of the spectrum in the range of 1.5–50 km, obtained through discrete wavelet transformation of the intensity fluctuation of the glow using Daubechies wavelets of order 5. The variability of the structures is characterized by the slope of the anisotropy variation spectrum over time. The statistics of these characteristics are presented according to the data of the ground-based all-sky camera of the Polar Geophysical Institute in Apatity for 2013–2020 and referenced to the position inside the auroral oval and the values of the geomagnetic field at Lovozero observatory. An algorithm for modeling the structure of polar auroras based on these characteristics is discussed.

作者简介

B. Kozelov

Polar Geophysical Institute; Polar Geophysical Institute

Email: bob-koz@yandex.ru
ORCID iD: 0000-0003-2738-2443
SPIN 代码: 4317-0170
Scopus 作者 ID: 57195623641
Researcher ID: N-2731-2013
docent, doctor of physical and mathematical sciences 2008

参考

  1. Головчанская И. В., Козелов Б. В. Диапазон масштабов альфвеновской турбулентности в верхней ионосфере авроральной зоны // Космические исследования. — 2016. — Т. 54, № 1. — С. 52—57. — doi: 10.7868/S002342061601009X.
  2. Козелов Б. В., Ролдугин А. В. Фрактальные характеристики структуры аврорального овала на основе экспериментальных данных // 47-й ежегодный Апатитский семинар «Физика авроральных явлений». Тезисы докладов. — Апатиты : Полярный геофизический институт, 2024. — С. 30.
  3. Суворова З. В., Мингалев И. В., Козелов Б. В. Влияние пространственных размеров областей высыпания электронов на прохождение КВ сигналов // Материалы 20-й Международной конференции «Современные проблемы дистанционного зондирования Земли из космоса». — Институт космических исследований РАН, 2022. — doi: 10.21046/20DZZconf-2022a.
  4. Харгривс Дж. К. Верхняя атмосфера и солнечно-земные связи: Введение в физику околоземной космической среды. — Ленинград : Гидрометеоиздат, 1982.
  5. Abry P., Flandrin P., Taqqu M. S., et al. Wavelets for the Analysis, Estimation, and Synthesis of Scaling Data // Self-Similar Network Traffic and Performance Evaluation. — Wiley, 2000. — P. 39–88. — doi: 10.1002/047120644x.ch2.
  6. Akasofu S.-I. Polar and Magnetospheric Substorms. — Springer Netherlands, 1968. — doi: 10.1007/978-94-010-3461-6.
  7. Chang T. Self-organized criticality, multi-fractal spectra, sporadic localized reconnections and intermittent turbulence in the magnetotail // Physics of Plasmas. — 1999. — Vol. 6, no. 11. — P. 4137–4145. — doi: 10.1063/1.873678.
  8. Chernyshov A. A., Kozelov B. V., Mogilevsky M. M. Study of auroral ionosphere using percolation theory and fractal geometry // Journal of Atmospheric and Solar-Terrestrial Physics. — 2017. — Vol. 161. — P. 127–133. — doi: 10.1016/j.jastp.2017.06.013.
  9. Chernyshov A. A., Mogilevsky M. M., Kozelov B. V. Use of fractal approach to investigate ionospheric conductivity in the auroral zone // Journal of Geophysical Research: Space Physics. — 2013. — Vol. 118, no. 7. — P. 4108–4118. — doi: 10.1002/jgra.50321.
  10. Feldstein Y. I., Starkov G. V. Dynamics of auroral belt and polar geomagnetic disturbances // Planetary and Space Science. — 1967. — Vol. 15, no. 2. — P. 209–229. — doi: 10.1016/0032-0633(67)90190-0.
  11. Hardy D. A., Gussenhoven M. S., Holeman E. A statistical model of auroral electron precipitation // Journal of Geophysical Research: Space Physics. — 1985. — Vol. 90, A5. — P. 4229–4248. — doi: 10.1029/ja090ia05p04229.
  12. Kozelov B. V. Fractal approach to description of the auroral structure // Annales Geophysicae. — 2003. — Vol. 21, no. 9. — P. 2011–2023. — doi: 10.5194/angeo-21-2011-2003.
  13. Kozelov B. V., Golovchanskaya I. V. Derivation of aurora scaling parameters from ground-based imaging observations: Numerical tests // Journal of Geophysical Research: Space Physics. — 2010. — Vol. 115, A2. — doi: 10.1029/2009ja014484.
  14. Kozelov B. V., Pilgaev S. V., Borovkov L. P., et al. Multi-scale auroral observations in Apatity: winter 2010-2011 // Geoscientific Instrumentation, Methods and Data Systems. — 2012. — Vol. 1, no. 1. — P. 1–6. — doi: 10.5194/gi-1-1-2012.
  15. Kozelov B. V., Titova E. E. Conjunction Ground Triangulation of Auroras and Magnetospheric Processes Observed by the Van Allen Probe Satellite near 6 Re // Universe. — 2023. — Vol. 9, no. 8. — P. 353. — doi: 10.3390/universe9080353.
  16. Kozelov B. V., Uritsky V. M., Klimas A. J. Power law probability distributions of multiscale auroral dynamics from groundbased TV observations // Geophysical Research Letters. — 2004. — Vol. 31, no. 20. — doi: 10.1029/2004GL020962.
  17. Kozelov B. V., Vorobjev V. G., Titova E. E., et al. Diagnostics of the High-Latitude Ionosphere and Spatiotemporal Dynamics of Auroral Precipitations // Bulletin of the Russian Academy of Sciences: Physics. — 2024. — Vol. 88, no. 3. — P. 394–399. — doi: 10.1134/S1062873823705573.
  18. Milan S. E., Evans T. A., Hubert B. Average auroral configuration parameterized by geomagnetic activity and solar wind conditions // Annales Geophysicae. — 2010. — Vol. 28, no. 4. — P. 1003–1012. — doi: 10.5194/angeo-28-1003-2010.
  19. Newell P. T., Liou K., Zhang Y., et al. OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels // Space Weather. — 2014. — Vol. 12, no. 6. — P. 368–379. — doi: 10.1002/2014SW001056.
  20. Oguti T. Similarity between global auroral deformations in DAPP photographs and small scale deformations observed by a TV camera // Journal of Atmospheric and Terrestrial Physics. — 1975. — Vol. 37, no. 11. — P. 1413–1418. — doi: 10.1016/0021-9169(75)90070-7.
  21. Vorobjev V. G., Yagodkina O. I., Katkalov Yu. V. Auroral Precipitation Model and its applications to ionospheric and magnetospheric studies // Journal of Atmospheric and Solar-Terrestrial Physics. — 2013. — Vol. 102. — P. 157–171. — doi: 10.1016/j.jastp.2013.05.007.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kozelov B.V., 2025

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可