GOLD IN ORES OF THE NATALKA GIANT DEPOSIT (NORTH EAST RUSSIA): CONTENT, DISTRIBUTION AND SPECIATION
- Autores: Kravtsova R.1, Makshakov A.1, Tauson V.1, Lipko S.1, Belozerova O.1
-
Afiliações:
- Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
- Edição: Volume 25, Nº 1 (2025)
- Páginas: ES1014
- Seção: Articles
- URL: https://journals.rcsi.science/1681-1208/article/view/352539
- DOI: https://doi.org/10.2205/2025ES000990
- EDN: https://elibrary.ru/kaoxtp
- ID: 352539
Citar
Texto integral
Resumo
Palavras-chave
Sobre autores
R. Kravtsova
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Email: krg@igc.irk.ru
ORCID ID: 0000-0002-5153-6871
Código SPIN: 9778-8135
Scopus Author ID: 6701863881
doctor of geological and mineralogical sciences
A. Makshakov
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Email: artem_m@mail.ru
ORCID ID: 0000-0002-6970-7501
Código SPIN: 4539-7084
Scopus Author ID: 36601165500
candidate of geological and mineralogical sciences
V. Tauson
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Email: vltauson@igc.irk.ru
ORCID ID: 0000-0001-8704-6105
Scopus Author ID: 7003991781
doctor of chemical sciences
S. Lipko
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Email: lipko@igc.irk.ru
ORCID ID: 0000-0001-8335-5656
Scopus Author ID: 15729203500
candidate of chemical sciences
O. Belozerova
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Email: obel@igc.irk.ru
ORCID ID: 0000-0002-8098-3590
Scopus Author ID: 6701535717
candidate of chemical sciences
Bibliografia
Akimov, V. V., D. N. Babkin, and O. Y. Belozerova (2024), Behavior of Gold Nanoparticles at the Interphase Boundary of Quartz-Selenide Copper and Iron at a Temperature of 450 ◦C and Different Selenium Activity, Russian Geology and Geophysics, 65(8), 910–926, https://doi.org/10.2113/rgg20244691. EDN: TQKNFD Barker, S. L. L., K. A. Hickey, J. S. Cline, et al. (2009), Uncloaking invisible gold: use of nanosims to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin-type gold deposits, Economic Geology, 104(7), 897–904, https://doi.org/10.2113/econgeo.104.7.897. Bortnikov, N. S., I. A. Bryzgalov, N. N. Krivitskaya, et al. (2004), The Maiskoe Multimegastage Disseminated Gold-Sulfide Deposit (Chukotka, Russia): Mineralogy, Fluid Inclusions, Stable Isotopes (O and S), History, and Conditions of Formation, Geology of Ore Deposits, 46(6), 409–440. EDN: LIUGYP Cabri, L. J., S. L. Chryssoulis, J. P. R. De Villiers, et al. (1989), The nature of “invisible” gold in arsenopyrite, The Canadian Mineralogist, 27(3), 353–362. Cambel, B., V. Streško, and O. Šherenčáaková (1980), The contents of gold in pyrites of various genesis, Geologický Zbornik - Geologica Carpathica, 31(1–2), 139–159. Cook, N. J., and S. L. Chryssoulis (1990), Concentrations of “invisible gold” in the common sulfides, The Canadian Mineralogist, 28(1), 1–16. Ehrig, K., C. L. Ciobanu, M. R. Verdugo-Ihl, et al. (2023), Lifting the cloak of invisibility: Gold in pyrite from the Olympic Dam Cu-U-Au-Ag deposit, South Australia, American Mineralogist, 108(2), 259–276, https://doi.org/10.2138/am-2022-8395. EDN: MSUDGG Finkelshtein, A. L., V. V. Tatarinov, E. A. Finkelstein, et al. (2018), About the assessment of gold concentrations in tiny inclusions within sulfide mineral matrix: An electron microprobe study, X-Ray Spectrometry, 47(6), 423–431, https://doi.org/10.1002/xrs.2967. EDN: UNOJEY Fleet, M. E., and A. H. Mumin (1997), Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis, American Mineralogist, 82(1–2), 182–193, https://doi.org/10.2138/am-1997-1-220. Fougerouse, D., S. M. Reddy, D. W. Saxey, et al. (2016), Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: Evidence from atom probe microscopy, American Mineralogist, 101(8), 1916–1919, https://doi.org/10.2138/am-2016-5781ccbyncnd. EDN: WSVTJZ Fridovsky, V. Y., L. I. Polufuntikova, and M. V. Kudrin (2022), Geochemical and Isotopic Characteristics of Disseminated Sulfide Mineralization of Orogenic Gold Deposits of the Yana-Kolyma Metallogenic Belt, Northeast Russia, Doklady Earth Sciences, 507(S2), S240–S246, https://doi.org/10.1134/s1028334x2260102x. Gao, F. P., Y. S. Du, Z. S. Pang, et al. (2019), LA-ICP-MS Trace-Element Analysis of Pyrite from the Huanxiangwa Gold Deposit, Xiong’ershan District, China: Implications for Ore Genesis, Minerals, 9(3), 157, https://doi.org/10.3390/min9030157. EDN: AHEVTZ Genkin, A. D., N. S. Bortnikov, L. J. Cabri, et al. (1998), A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation, Economic Geology, 93(4), 463–487, https://doi.org/10.2113/gsecongeo.93.4.463. EDN: LERQQZ Goncharov, V. I., S. V. Voroshin, and V. A. Sidorov (2002), Natalka Gold Lode Deposit, 250 pp., NEISRI FEB RAS (in Russian). Goryachev, N. A., V. A. Sidorov, I. S. Litvinenko, and T. I. Mikhalitsyna (2000), Mineral composition and petrogeochemical features of ore zones of deep horizons of the Natalka deposit, Kolyma, (2), 38–49 (in Russian). Goryachev, N. A., O. V. Vikent’eva, N. S. Bortnikov, et al. (2008), The world-class Natalka gold deposit, northeast Russia: REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore, Geology of Ore Deposits, 50(5), 362–390, https://doi.org/10.1134/s1075701508050024. EDN: LLGXKX Goryachkin, N. I., V. A. Chinenov, and V. L. Khoroshilov (1999), Mineralogical characteristics of gold lost during ore processing at the Natalka deposit (North-East of Russia), Proceedings of higher educational establishments. Geology and Exploration, (5), 95–102 (in Russian). Grigorov, S. A., V. D. Vorozhbenko, P. I. Kushnarev, et al. (2007), Geology and key signatures of the Natalka gold deposit, Domestic Geology, (3), 43–50 (in Russian), EDN: IAAXZN. Herrington, R. J., and J. J. Wilkinson (1993), Colloidal gold and silica in mesothermal vein systems, Geology, 21(6), 539–542, https://doi.org/10.1130/0091-7613(1993)021<0539:CGASIM>2.3.CO;2. Hough, R. M., R. R. P. Noble, and M. Reich (2011), Natural gold nanoparticles, Ore Geology Reviews, 42(1), 55–61, https://doi.org/10.1016/j.oregeorev.2011.07.003. EDN: PHRONN Koneev, R. I., R. A. Khalmatov, and A. N. Krivosheeva (2020), Finding forms and Micro- and Nanoscale Assemblages of Gold as Indicators of Formation Conditions, Distribution, and Typification of Orogenic Deposits of Uzbekistan (South Tien Shan), Geology of Ore Deposits, 62(8), 731–742, https://doi.org/10.1134/s1075701520080061. Kravtsova, R. G. (2010), Geochemistry and Forming Conditions of Gold-Silver Ore-Forming Systems, Northern Pre Okhotsk Region, 292 pp., Geo, Novosibirsk (in Russian), EDN: QKJONH. Kravtsova, R. G., and L. A. Solomonova (1985), Gold in Pyrite from Ores and Metasomatites of the Gold-Silver Deposits in the North Okhot’ye Volcanogenic Fields, Geochemistry International, 22(5), 9–14. Kravtsova, R. G., V. L. Tauson, and E. M. Nikitenko (2015), Modes of Au, Pt, and Pd occurrence in arsenopyrite from the Natalkinskoe deposit, NE Russia, Geochemistry International, 53(11), 964–972, https://doi.org/10.1134/s0016702915090037. EDN: UZZWST Kravtsova, R. G., V. L. Tauson, N. A. Goryachev, et al. (2020a), SEM Study of the Surface of Arsenopyrite and Pyrite from the Natalkinskoe Deposit, Northeastern Russia, Geochemistry International, 58(5), 531–538, https://doi.org/10.1134/s0016702920050031. EDN: UFIQZO Kravtsova, R. G., V. L. Tauson, A. S. Makshakov, et al. (2020b), Platinum Group Elements in Arsenopyrites and Pyrites of the Natalkinskoe Gold Deposit (Northeastern Russia), Minerals, 10(4), 318, https://doi.org/10.3390/min10040318. EDN: GTYOWZ Kravtsova, R. G., A. S. Makshakov, V. L. Tauson, et al. (2022), Speciation Features of Gold in Ores And Minerals of the Natalkinskoe Deposit (North-East Russia), Geodynamics & Tectonophysics, 13(2), https://doi.org/10.5800/gt-2022-13-2s-0595 (in Russian). Large, R. R., and V. V. Maslennikov (2020), Invisible Gold Paragenesis and Geochemistry in Pyrite from Orogenic and Sediment-Hosted Gold Deposits, Minerals, 10(4), 339, https://doi.org/10.3390/min10040339. EDN: YTALOB Large, R. R., L. Danyushevsky, C. Hollit, et al. (2009), Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits, Economic Geology, 104(5), 635–668, https://doi.org/10.2113/gsecongeo.104.5.635. EDN: MWZMFX Li, C. P., J. F. Shen, S. R. Li, et al. (2019), In-Situ LA-ICP-MS Trace Elements Analysis of Pyrite and the Physicochemical Conditions of Telluride Formation at the Baiyun Gold Deposit, North East China: Implications for Gold Distribution and Deposition, Minerals, 9(2), 129, https://doi.org/10.3390/min9020129. EDN: RAYYZC Liang, Y. Y., L. Shu, P. Y. Ma, et al. (2023), Gold source and ore-forming process of the Linglong gold deposit, Jiaodong gold province, China: Evidence from textures, mineral chemical compositions and sulfur isotopes of pyrite, Ore Geology Reviews, 159, 105523, https://doi.org/10.1016/j.oregeorev.2023.105523. Litvinenko, I. S. (2009), The conditions of existence and typomorphism of native gold in ores of the Degdekanskoe deposit (northeastern Russia) in black-shale strata, Russian Geology and Geophysics, 50(6), 535–540, https://doi.org/10.1016/j.rgg.2008.10.003. EDN: KHYBUS Liu, J. C., Y. T. Wang, S. K. Huang, et al. (2019), The gold occurrence in pyrite and Te-Bi mineralogy of the Fancha gold deposit, Xiaoqinling gold field, southern margin of the North China Craton: Implication for ore genesis, Geological Journal, 55(8), 5791–5811, https://doi.org/10.1002/gj.3637. EDN: VBWTEY Method NSAM No. 237-S (2016), Gold Determination in Rocks, Ores and Their Processed Products used Extraction-AtomicAbsorption Method with Organic Sulfides, 18 pp., VIMS, Moscow (in Russian). Mikhalitsyna, T. I., and O. T. Sotskaya (2020), The Role of Black-Shale Strata in the Formation of the Natalka and Pavlik Gold Deposits (Yana-Kolyma Orogenic Belt), Russian Geology and Geophysics, 61(12), 1354–1373, https://doi.org/10.15372/rgg2020149. EDN: PBTXOR Moiseenko, V. G., and I. V. Kuznetsova (2010), The role of gold, silver, and lead nanoparticles in the formation of deposits of precious metals, Doklady Earth Sciences, 430(1), 125–128, https://doi.org/10.1134/s1028334x10010277. EDN: MXLZLH Morishita, Y., N. Shimada, and K. Shimada (2018), Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit, Japan: Significance of variation and distribution of Au/As ratios in pyrite, Ore Geology Reviews, 95, 79–93, https://doi.org/10.1016/j.oregeorev.2018.02.029. EDN: YHKNLN Moskvitin, S. G., L. V. Moskvitina, and V. I. Popov (2023), Morphology and localization of nanoscale gold in the sulphides of the gold-sulphide deposit situated in the black shale strata of the Northern Verkhoyanye in Yakutia, Tsvetnye Metally, (3), 13–19, https://doi.org/10.17580/tsm.2023.03.02 (in Russian). EDN: TEDLGY Novozhilov, Y. I., and A. M. Gavrilov (1999), Gold-sulfide deposits in terrigenous carbonaceous strata, 220 pp., TsNIGRI, Moscow (in Russian). Palenik, C. S., S. Utsunomiya, M. Reich, et al. (2004), “Invisible” gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit, American Mineralogist, 89(10), 1359–1366, https://doi.org/10.2138/am-2004-1002. EDN: LSURRL Pals, D. W., P. G. Spry, and S. Chryssoulis (2003), Invisible Gold and Tellurium in Arsenic-Rich Pyrite from theEmperor Gold Deposit, Fiji: Implications for Gold Distribution and Deposition, Economic Geology, 98(3), 479–493, https://doi.org/10.2113/gsecongeo.98.3.479. EDN: JRDYWX Pavlova, L. A. (2014), The Electron Probe X-Ray Microanalysis and Its Utilization, 294 pp., LAP LAMBERT Academic Publishing, Saarbrucken (in Russian). Plyusnina, L. P., A. I. Khanchuk, V. I. Goncharov, et al. (2003), Gold, platinum, and palladium in ores of the Natalka deposit, Upper Kolyma Region, Doklady Earth Sciences, 391(6), 836–340. EDN: LIFODD Prokofiev, V. Y., D. A. Banks, K. V. Lobanov, et al. (2020), Exceptional Concentrations of Gold Nanoparticles in 1,7 Ga Fluid Inclusions From the Kola Superdeep Borehole, Northwest Russia, Scientific Reports, 10(1), 1108, https://doi.org/10.1038/s41598-020-58020-8. EDN: ETWVHA Saunders, J. A., and P. A. Schoenly (1995), Boiling, colloid nucleation and aggregation, and the genesis of bonanza Au-Ag ores of the sleeper deposit, Nevada, Mineralium Deposita, 30(3–4), 199–210, https://doi.org/10.1007/bf00196356. EDN: WTCSRW Savva, N. E., R. G. Kravtsova, G. S. Anisimova, and G. A. Palyanova (2022), Typomorphism of Native Gold (GeologicalIndustrial Types of Gold Deposits in the North-East of Russia), Minerals, 12(5), 561, https://doi.org/10.3390/min12050561. EDN: ANIYRM Shao, Y. J., W. S. Wang, Q. Q. Liu, and Y. Zhang (2018), Trace Element Analysis of Pyrite from the Zhengchong Gold Deposit, Northeast Hunan Province, China: Implications for the Ore-Forming Process, Minerals, 8(6), 262, https://doi.org/10.3390/min8060262. EDN: YJPDLN Sidorova, N. V., V. V. Aristov, A. V. Grigor’eva, and A. A. Sidorov (2020), “Invisible” Gold in Pyrite and Arsenopyrite from The Pavlik Deposit (Northeastern Russia), Doklady Earth Sciences, 495(1), 821–826, https://doi.org/10.1134/s1028334x20110136. EDN: YSVVYT Sidorova, N. V., A. V. Volkov, E. V. Kovalchuk, et al. (2022), Invisible Gold and Other Impurity Elements in Pyrite and Arsenopyrite of Disseminated Ores of the Kyuchus Deposit (Sakha Republic (Yakutia)), Geology of Ore Deposits, 64(5), 281–291, https://doi.org/10.1134/s1075701522040067. EDN: FCPDLN Simon, G., S. E. Kesler, and S. Chryssoulis (1999), Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada; implications for deposition of gold in carlin-type deposits, Economic Geology, 94(3), 405–421, https://doi.org/10.2113/gsecongeo.94.3.405. Tan, H. J., Y. J. Shao, Q. Q. Liu, et al. (2022), Textures, trace element geochemistry and in-situ sulfur isotopes of pyrite from the Xiaojiashan gold deposit, Jiangnan Orogen: Implications for ore genesis, Ore Geology Reviews, 144, 104843, https://doi.org/10.1016/j.oregeorev.2022.104843. EDN: MHKRYH Tauson, V. L., and E. K. Lustenberg (2008), Quantitative determination of modes of gold occurrence in minerals by the statistical analysis of analytical data samplings, Geochemistry International, 46(4), 423–428, https://doi.org/10.1134/s0016702908040101. EDN: LLKRQJ Tauson, V. L., O. I. Bessarabova, R. G. Kravtsova, et al. (2002), Determination of binding forms of gold in pyrite by means of statistical analysis, Russian Geology and Geophysics, 43(1), 56–64. Tauson, V. L., R. G. Kravtsova, V. I. Grebenshchikova, et al. (2009), Surface typochemistry of hydrothermal pyrite: Electron spectroscopic and scanning probe microscopic data. II. Natural pyrite, Geochemistry International, 47(3), 231–243, https://doi.org/10.1134/s0016702909030021. EDN: LLRXHF Tauson, V. L., D. N. Babkin, T. M. Pastushkova, et al. (2011), Dualistic distribution coefficients of elements in the system mineral-hydrothermal solution. I. Gold accumulation in pyrite, Geochemistry International, 49(6), 568–577, https://doi.org/10.1134/s0016702911060097. EDN: OHTLQR Tauson, V. L., D. N. Babkin, V. V. Akimov, et al. (2013), Trace elements as indicators of the physicochemical conditions of mineral formation in hydrothermal sulfide systems, Russian Geology and Geophysics, 54(5), 526–543, https://doi.org/10.1016/j.rgg.2013.04.005. EDN: RFGRZJ Tauson, V. L., R. G. Kravtsova, N. V. Smagunov, et al. (2014), Structurally and superficially bound gold in pyrite from deposits of different genetic types, Russian Geology and Geophysics, 55(2), 273–289, https://doi.org/10.1016/j.rgg.2014.01.011. EDN: SKLMML Tauson, V. L., S. V. Lipko, N. V. Smagunov, and R. G. Kravtsova (2018a), Trace Element Partitioning Dualism under Mineral-Fluid Interaction: Origin and Geochemical Significance, Minerals, 8(7), 282, https://doi.org/10.3390/min8070282. EDN: YBUUHB Tauson, V. L., S. V. Lipko, N. V. Smagunov, et al. (2018b), Distribution and segregation of trace elements during the growth of ore mineral crystals in hydrothermal systems: geochemical and mineralogical implications, Russian Geology and Geophysics, 59(12), 1718–1732, https://doi.org/10.1016/j.rgg.2018.12.013. EDN: UTBELY Tauson, V. L., S. V. Lipko, R. G. Kravtsova, et al. (2019), Distribution of “Invisible” Noble Metals between Pyrite and Arsenopyrite Exemplified by Minerals Coexisting in Orogenic Au Deposits of North-Eastern Russia, Minerals, 9(11), 660, https://doi.org/10.3390/min9110660. EDN: JYSBDR Volkov, A. V., A. D. Genkin, and V. I. Goncharov (2006), The forms of the presence of gold in the ores of the Natalka and May deposits (Northeast Russia), Tikhookeanskaya Geologiya, 25(6), 18–29 (in Russian), EDN: JJYBLZ. Volkov, A. V., A. A. Sidorov, N. E. Savva, et al. (2016), Orogenic Gold Deposits of the Yana-Kolyma Fold Belt: Ore and Fluid Geochemical Peculiarities, Ore Formation Conditions, The Bulletin of the North-East Scientific Center, (3), 3–21 (in Russian), EDN: WZWVIV. Wells, J. D., and T. E. Mullens (1973), Gold-Bearing Arsenian Pyrite Determined by Microprobe Analysis, Cortez and Carlin Gold mines, Nevada, Economic Geology, 68(2), 187–201, https://doi.org/10.2113/gsecongeo.68.2.187. Zhang, J., J. Deng, H. Y. Chen, et al. (2014), LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit, Sanjiang region, China: Implication for ore-forming process, Gondwana Research, 26(2), 557–575, https://doi.org/10.1016/j.gr.2013.11.003. EDN: UROYSL Zhao, H. X., H. E. Frimmel, S. Y. Jiang, and B. Z. Dai (2011), LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis, Ore Geology Reviews, 43(1), 142–153, https://doi.org/10.1016/j.oregeorev.2011.07.006. EDN: PHROOH
Arquivos suplementares



