DIGITAL ANALYSIS OF CHANGES IN HYDROCARBON RESERVOIR PORE SPACE CHARACTERISTICS AFTER FILTRATION TESTS
- 作者: Khimulia V.V.1
-
隶属关系:
- Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
- 期: 卷 25, 编号 1 (2025)
- 页面: ES1013
- 栏目: Articles
- URL: https://journals.rcsi.science/1681-1208/article/view/352537
- DOI: https://doi.org/10.2205/2025ES000988
- EDN: https://elibrary.ru/hliwkc
- ID: 352537
如何引用文章
全文:
详细
The paper presents the results of non-destructive digital studies of remaining changes in the structural and reservoir volumetric properties of the rocks of the Chayanda oil and gas condensate field as a result of hydraulic fracturing fluid injection. Computed X-ray tomography images were obtained using a high-resolution ProCon X-Ray CT-MINI scanner of the Institute for Problems in Mechanics of the Russian Academy of Sciences. 3D models of the reservoir were created on the basis of the images for digital analysis of the change in reservoir properties after the tests. The structure and relative disposition of rock grains before and after the tests were compared. Local porosity changes in the specimen volume were assessed, including plotting of porosity maps for integral pore space analysis. Pore size distributions were drawn, and conclusions were made about the nature of changes in porometric characteristics of rocks. On the basis of the digital approach the porosity values of rocks were calculated, good agreement with the laboratory measurement data was shown. Changes in porosity distribution over the volume of a specimen of coarse-grained sandstone are described. Uneven distribution of porosity in the specimen after tests is found. Reasons for the described changes in porosity are proposed. It is shown that in the presence of significant heterogeneity of structure and pore space of rocks, the application of traditional methods of reservoir flow properties measurement may be insufficient for accurate characterization of changes in rocks. It is confirmed that the application of nondestructive analysis methods allows to significantly clarify the results of measurements of rock reservoir properties obtained by laboratory method, and in some cases can become an indispensable tool for their correct assessment.
作者简介
V. Khimulia
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Email: valery.khim@gmail.com
ORCID iD: 0000-0003-2116-6483
candidate of physical and mathematical sciences 2021
参考
Абросимов К. Н., Фомин Д. С., Романенко К. А. и др. Связность порового пространства почв. Показатели связности на примере различных типов порового пространства // Почва как связующее звено функционирования природных и антропогенно-преобразованных экосистем. — Иркутск : Иркутский государственный университет, 2021. — С. 206—210. — EDN: IGOWHR. Алиев З. С., Котлярова Е. М. Приближенный метод создания и эксплуатации ПХГ в неоднородных по толщине пластах с использованием горизонтальных скважин // Труды РГУ нефти и газа (НИУ) имени И.М. Губкина. Оренбургский филиал. Экологическая ответственность нефтегазовых предприятий: Материалы научно-практической конференции. — Саратов : ООО «Амирит», 2017. — С. 46—55. — EDN: ZBVNGD. Иванов М. К., Бурлин Ю. К., Калмыков Г. А. и др. Петрофизические методы исследования кернового материала (Терригенные отложения). Учебное пособие. Книга 1. — Москва : Издательство Московского университета, 2008. — 112 с. Кривощёков С. Н., Кочнев А. А. Опыт применения рентгеновской компьютерной томографии для изучения свойств горных пород // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. — 2013. — Т. 12, № 6. — С. 32—42. — EDN: SGLWLL. Химуля В. В. Исследование структурных особенностей порового пространства коллектора углеводородов на основе снимков рентгеновской компьютерной томографии // Актуальные проблемы нефти и газа. — 2023. — № 43. — С. 44—57. — doi: 10.29222/ipng.2078-5712.2023-43.art4. EDN: UKJRQP Ar Rushood I., Alqahtani N., Wang Y. D., et al. Segmentation of X-Ray Images of Rocks Using Deep Learning // SPE Annual Technical Conference and Exhibition. — SPE, 2020. — doi: 10.2118/201282-ms. Becker J., Hilden J., Planas B. GeoDict User Guide – PoroDict 2022. — Math2Market GmbH, 2022. — doi: 10.30423/userguide.geodict2022-porodict. Blunt M. J. Multiphase Flow in Permeable Media: A Pore-Scale Perspective. — Cambridge University Press, 2016. — doi: 10.1017/9781316145098. Ganat T. A.-A. O. Fundamentals of Reservoir Rock Properties. — Springer International Publishing, 2020. — doi: 10.1007/978-3-030-28140-3. GeoDict. The Digital Material Laboratory. — 2024. — URL: https://www.math2market.de/ (visited on 09/23/2024). Jia L., Chen M., Jin Y. 3D imaging of fractures in carbonate rocks using X-ray computed tomography technology // Carbonates and Evaporites. — 2013. — Vol. 29, no. 2. — P. 147–153. — doi: 10.1007/s13146-013-0179-9. EDN: CYTOMM Khimulia V., Karev V., Kovalenko Yu., et al. Changes in filtration and capacitance properties of highly porous reservoir in underground gas storage: CT-based and geomechanical modeling // Journal of Rock Mechanics and Geotechnical Engineering. — 2024. — Vol. 16, no. 8. — P. 2982–2995. — doi: 10.1016/j.jrmge.2023.12.015. EDN: VSIXTI Menke H. P., Gao Y., Linden S., et al. Using Nano-XRM and High-Contrast Imaging to Inform Micro-Porosity Permeability During Stokes-Brinkman Single and Two-Phase Flow Simulations on Micro-CT Images // Frontiers in Water. — 2022. — Vol. 4. — doi: 10.3389/frwa.2022.935035. EDN: JUAQRI Merkus H. G. Particle Size, Size Distributions and Shape // Particle Size Measurements. — Springer Netherlands, 2009. — P. 13–42. — doi: 10.1007/978-1-4020-9016-5_2. Mostaghimi P., Blunt M. J., Bijeljic B. Computations of Absolute Permeability on Micro-CT Images // Mathematical Geosciences. — 2012. — Vol. 45, no. 1. — P. 103–125. — doi: 10.1007/s11004-012-9431-4. EDN: BKYODF Naresh K., Khan K. A., Umer R., et al. The use of X-ray computed tomography for design and process modeling of aerospace composites: A review // Materials & Design. — 2020. — Vol. 190. — P. 108553. — doi: 10.1016/j.matdes.2020.108553. Nimmo J. R. Porosity and Pore Size Distribution // Reference Module in Earth Systems and Environmental Sciences. — Elsevier, 2013. — doi: 10.1016/B978-0-12-409548-9.05265-9. Njeru R. M., Halisch M., Szanyi J. Micro-scale investigation of the pore network of sandstone in the Pannonian Basin to improve geothermal energy development // Geothermics. — 2024. — Vol. 122. — P. 103071. — doi: 10.1016/j.geothermics.2024.103071. EDN: EUYWYQ Ren D., Xu J., Su Sh., et al. Characterization of internal pore size distribution and interconnectivity for asphalt concrete with various porosity using 3D CT scanning images // Construction and Building Materials. — 2023. — Vol. 400. — P. 132751. — doi: 10.1016/j.conbuildmat.2023.132751. EDN: BJZRAX Romano C. R., Zahasky Ch., Garing Ch., et al. Subcore Scale Fluid Flow Behavior in a Sandstone With Cataclastic Deformation Bands // Water Resources Research. — 2020. — Vol. 56, no. 4. — doi: 10.1029/2019wr026715. EDN: DRTEJV Vajdova V., Baud P., Wong T.-F. Permeability evolution during localized deformation in Bentheim sandstone // Journal of Geophysical Research: Solid Earth. — 2004. — Vol. 109, B10. — doi: 10.1029/2003jb002942.
补充文件



