ON AN APPROACH TO ZONING RISKS OF GROUNDWATER PROTECTIVE LAYER FAILURE BASED ON A SET OF GEOPHYSICAL AND GEOTECHNICAL CHARACTERISTICS

封面

如何引用文章

全文:

详细

The Verkhnekamsk potassium-magnesium salt deposit (VKSD) is one of the largest in the world. The primary challenge in underground salt mining is maintaining the integrity of the groundwater protective layer, which separates the mined seams from aquifers. In this context, the Verkhnekamsk deposit is mined using a chamber system room-and-pillar method, ensuring the stability of the protective layer through inter-chamber pillars. This paper presents the results of a preliminary analysis of the geological and mining conditions in one of the mines of the Verkhnekamsk deposit. The procedure for forming the initial data set is discussed. Test calculations based on a limited data set were performed, demonstrating the potential of combining artificial neural network algorithms and discrete mathematical analysis. The results achieved on the formed dataset successfully identified hazard classes. Thus, it can be concluded that this technology is fundamentally effective for assessing the risk of groundwater protective layer failure. The proposed approach establishes links between phenomena, their associated risks, and the deformations of underground workings and the Earth's surface, enabling proactive measures to protect mines from flooding.

作者简介

I. Losev

Geophysical Center of the Russian Academy of Sciences

Email: i.losev@gcras.ru
ORCID iD: 0009-0005-0785-4986
SPIN 代码: 7963-1926
Scopus 作者 ID: 57214669904
Researcher ID: https://www.researchgate.net/profile/Ilia-Losev-2

A. Baryakh

Mining Institute of the Ural Branch of the Russian Academy of Sciences

ORCID iD: 0000-0003-2737-6166
Scopus 作者 ID: 6701852821
Researcher ID: https://www.researchgate.net/profile/Alexandr-Baryakh
academician Russian Academy of Sciences-2025, doctor of technical sciences-2025

A. Evseev

Mining Institute of the Ural Branch of the Russian Academy of Sciences

ORCID iD: 0000-0003-3408-9309
Scopus 作者 ID: 57208449142
Researcher ID: https://www.researchgate.net/profile/Alexandr-Baryakh
candidate of technical sciences-2025

A. Kamaev

Geophysical Center of the Russian Academy of Sciences

ORCID iD: 0009-0008-5139-8086
SPIN 代码: 1265-3294
Scopus 作者 ID: 58575401800
Researcher ID: https://www.researchgate.net/profile/Artyom-Kamaev

I. Zhukova

PJSC Uralkali

ORCID iD: 0009-0003-5273-9931

A. Manevich

Geophysical Center of the Russian Academy of Sciences

ORCID iD: 0000-0001-7486-6104
SPIN 代码: 6470-0460
Scopus 作者 ID: 57200214238
Researcher ID: https://www.researchgate.net/profile/Alexandr-Manevich-2

R. Shevchuk

Geophysical Center of the Russian Academy of Sciences

ORCID iD: 0000-0003-3461-6383
SPIN 代码: 5379-1835
Scopus 作者 ID: 57206721960
Researcher ID: https://www.researchgate.net/profile/Roman-Shevchuk-3
candidate of technical sciences 2024-2025

D. Akmatov

Geophysical Center of the Russian Academy of Sciences

ORCID iD: 0000-0001-6435-464X
SPIN 代码: 1687-2529
Scopus 作者 ID: 57207911204
Researcher ID: https://www.researchgate.net/profile/Dastan-Akmatov
candidate of technical sciences 2024-2025

参考

  1. Agayan S. M., Losev I. V., Belov I. O., et al. Dynamic Activity Index for Feature Engineering of Geodynamic Data for Safe Underground Isolation of High-Level Radioactive Waste // Applied Sciences. — 2022. — Vol. 12, no. 4. — doi: 10.3390/app12042010.
  2. Araujo M., Rivas T., Giraldez E., et al. Use of machine learning techniques to analyse the risk associated with mine sludge deposits // Mathematical and Computer Modelling. — 2011. — Vol. 54, no. 7/8. — P. 1823–1828. — doi: 10.1016/j.mcm.2010.11.066.
  3. Baryakh A. A., Gubanova E. A. On flood protection measures for potash mines // Journal of Mining Institute. — 2019. — Vol. 240, no. 6. — P. 613–620. — doi: 10.31897/pmi.2019.6.613.
  4. Baryakh A. A., Samodelkina N. A. Water-tight stratum rupture under large-scale mining. Part II // Journal of Mining Science. — 2012. — Vol. 48, no. 6. — P. 954–961. — doi: 10.1134/s1062739148060020.
  5. Baryakh A. A., Samodelkina N. A. Geomechanical Estimation of Deformation Intensity above the Flooded Potash Mine // Journal of Mining Science. — 2018. — Vol. 53, no. 4. — P. 630–642. — doi: 10.1134/S106273911704262X.
  6. Baryakh A. A., Tenison L. O. Justification of engineering safety criteria for undermining of water-proof layer in the Upper Kama Salt Deposit // Gornyi Zhurnal. — 2021. — No. 4. — P. 57–63. — doi: 10.17580/gzh.2021.04.08. — (In Russian).
  7. Baryakh A. A., Tsayukov A. A., Evseev A. V., et al. Mathematical Modeling of Deformation and Failure of Salt Rock Samples // Journal of Mining Science. — 2021. — Vol. 57, no. 3. — P. 370–379. — doi: 10.1134/s1062739121030029.
  8. Gvishiani A. D., Agayan S. M., Bogoutdinov Sh. R. Investigation of systems of real functions on two-dimensional grids using fuzzy sets // Chebyshevskii Sbornik. — 2019a. — Vol. 20, no. 1. — P. 94–111. — doi: 10.22405/2226-8383-2019-20-1-94-111. — (In Russian).
  9. Gvishiani A. D., Agayan S. M., Losev I. V., et al. Geodynamic hazard assessment of a structural block holding an underground radioactive waste disposal facility // Mining informational and analytical bulletin. — 2021. — No. 12. — P. 5–18. — doi: 10.25018/0236_1493_2021_12_0_5. — (In Russian).
  10. Gvishiani A. D., Kaftan V. I., Krasnoperov R. I., et al. Geoinformatics and Systems Analysis in Geophysics and Geodynamics // Izvestiya, Physics of the Solid Earth. — 2019b. — Vol. 55, no. 1. — P. 33–49. — doi: 10.1134/s1069351319010038.
  11. Ibrahim A. M., Bennett B. The Assessment of Machine Learning Model Performance for Predicting Alluvial Deposits Distribution // Procedia Computer Science. — 2014. — Vol. 36. — P. 637–642. — doi: 10.1016/j.procs.2014.09.067.
  12. Kolmogorov A. N. On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition // Doklady Akademii Nauk SSSR. — 1957. — Vol. 114, no. 5. — P. 953–956. — (In Russian).
  13. Kudryashov A. I., Vasiukov V. E., Fon-der-Flass G. S., et al. Faults on the Verkhnekamskoe deposit of salts. — Perm : Mining Institute UB RAS, Perm State University, 2004. — P. 194. — (In Russian).
  14. Migoń P., Michniewicz A. Topographic Wetness Index and Terrain Ruggedness Index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland // Zeitschrift für Geomorphologie, Supplementary Issues. — 2017. — Vol. 61, no. 2. — P. 61–80. — doi: 10.1127/zfg_suppl/2016/0328.
  15. Owoseni J. O., Tamarautobou E. U., Asiwaju-Bello Y. A. Application Sequential Analysis and Geographic Information Systems for Hydrochemical Evolution Survej, Shagari Environ, Southwestern Nigeria // Amerikan International Journal of Contemporary Reserch. — 2013. — Vol. 3, no. 3. — P. 38–48.
  16. Pedregosa F., Varoquaux G., Gramfort A., et al. Scikit-learn: Machine Learning in Python // Journal of Machine Learning Research. — 2012. — Vol. 12. — P. 2825–2830. — doi: 10.48550/ARXIV.1201.0490.
  17. Phillips J. D., Schwanghart W., Heckmann T. Graph theory in the geosciences // Earth-Science Reviews. — 2015. — Vol. 143. — P. 147–160. — doi: 10.1016/j.earscirev.2015.02.002.
  18. Zhang Y., Li J., Lei Y., et al. 3D simulations of salt tectonics in the Kwanza Basin: Insights from analogue and Discrete Element numerical modeling // Marine and Petroleum Geology. — 2020. — Vol. 122. — P. 104666. — doi: 10.1016/j.marpetgeo.2020.104666.
  19. Zubov V. P., Kovalski E. R., Antonov S. V., et al. Improving the safety of mines in developing Verkhnekamsk potassium and magnesium salts // Mining Informational and analytical bulletin. — 2019. — Vol. 5. — P. 22–33. — doi: 10.25018/0236-1493-2019-05-0-22-33. — (In Russian).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Losev I., Baryakh A., Evseev A., Kamaev A., Zhukova I., Manevich A., Shevchuk R., Akmatov D., 2025

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可