PROBLEMS OF IMPLEMENTING WEB GIS TECHNOLOGIES FOR PROCESSING, ANALYSIS AND VISUALIZATION OF GEOPHYSICAL DATA

Cover Page

Cite item

Full Text

Abstract

The modern trend towards widespread use of software and tools for processing geospatial (including geophysical) data for a wide range of consumers contributes to the development of web-oriented solutions to the associated problems. A special complexity in the context of program implementation as well as the client computing capabilities is the visualization of geospatial information, which in the web environment is associated with the need to ensure acceptable rendering reactivity, on the one hand, and spatial image quality, on the other. Two main problems can be highlighted here: spatial image artifacts that appear as breaks in level lines, and the impossibility of technically combining heterogeneous spatial primitives into a single layer for retrospective dynamic visualization. The paper is concerned with the solutions to eliminate the above problems using geostatistical models and methods, as well as web design algorithms, patterns, and technologies. Using a web GIS for visualizing geophysical parameters as an example, the operability and effectiveness of the proposed software and algorithmic solutions are confirmed.

About the authors

A. Vorobev

Ufa University of Science and Technology; Geophysical Center of the Russian Academy of Sciences

Email: geomagnet@list.ru
ORCID iD: 0000-0002-9680-5609
SPIN-code: 8749-3117
Scopus Author ID: 56767909700
Laboratory of Geoinformatics and Geomagnetic Studies, doctor of technical sciences

G. Vorobeva

Ufa University of Science and Technology

Email: vorobeva.gulya@yandex.ru
ORCID iD: 0000-0001-7878-9724

References

  1. Alkaradaghi K., Hamamin D., Karim H., et al. Geospatial Technique Integrated with MCDM Models for Selecting Potential Sites for Harvesting Rainwater in the Semi-arid Region // Water, Air, & Soil Pollution. — 2022. — Vol. 233, no. 8. — doi: 10.1007/s11270-022-05796-2.
  2. Breunig M., Bradley P. E., Jahn M., et al. Geospatial Data Management Research: Progress and Future Directions // ISPRS International Journal of Geo-Information. — 2020. — Vol. 9, no. 2. — P. 95. — doi: 10.3390/ijgi9020095.
  3. Chen F., Ma X., Ren H. Progressive Transmission of Vector Spatial Data // Journal of Networks. — 2013. — Vol. 8, no. 5. — doi: 10.4304/jnw.8.5.1065-1072.
  4. Ding H., Cai M., Lin X., et al. RTVEMVS: Real-time modeling and visualization system for vehicle emissions on an urban road network // Journal of Cleaner Production. — 2021. — Vol. 309. — P. 127166. — doi: 10.1016/j.jclepro.2021.127166.
  5. Dintu S., Suletea A., Botez A., et al. The use of spatial modeling to teach engineering graphics // Journal of Social Sciences. — 2022. — Vol. 5, no. 2. — P. 104–112. — doi: 10.52326/jss.utm.2022.5(2).09.
  6. Figueiredo L. J. A. S., Santos G. B. dos, Souza R. P. P. M., et al. MoreData: A Geospatial Data Enrichment Framework // Proceedings of the 29th International Conference on Advances in Geographic Information Systems. — ACM, 2021. — P. 419–422. — doi: 10.1145/3474717.3484210.
  7. Gorokhov S. N., Shcherbakova T. F., Sedov S. S. Elimination of Isoline Drift when Analysis of the Electrocardiosignal of the Vehicle Driver // 2021 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED). — IEEE, 2021. — P. 1–5. — doi: 10.1109/tirved53476.2021.9639163.
  8. Horbiński T., Lorek D. The use of Leaflet and GeoJSON files for creating the interactive web map of the preindustrial state of the natural environment // Journal of Spatial Science. — 2020a. — Vol. 67, no. 1. — P. 61–77. — doi: 10.1080/14498596.2020.1713237.
  9. Horbiński T., Lorek D. The use of Leaflet and GeoJSON files for creating the interactive web map of the preindustrial state of the natural environment // Journal of Spatial Science. — 2020b. — Vol. 67, no. 1. — P. 61–77. — doi: 10.1080/14498596.2020.1713237.
  10. Kachanov P., Zuev A., Yatsenko K. Method of overlapping geospatial data // Bulletin of the National Technical University «KhPI» Series: New solutions in modern technologies. — 2016. — 12 (1184). — P. 119. — doi: 10.20998/2413-4295.2016.12.17.
  11. Kumari S., Parmar V. GeoWebCln: An Intensive Cleaning Architecture for Geospatial Metadata // Quaestiones Geographicae. — 2022. — Vol. 41, no. 1. — P. 51–62. — doi: 10.2478/quageo-2022-0004.
  12. Ma X. Linked Geoscience Data in practice: where W3C standards meet domain knowledge, data visualization and OGC standards // Earth Science Informatics. — 2017. — Vol. 10, no. 4. — P. 429–441. — doi: 10.1007/s12145-017-0304-8.
  13. Moins I., Boggio D. SIRS Digues 2.0: A Cooperative Software For Levees Management // 3rd European Conference on Flood Risk Management (FLOODrisk 2016). — EDP Sciences, 2016. — doi: 10.1051/e3sconf/20160704018.
  14. Mohd Napi N. N. L., Zainal M. H., Abdullah S., et al. Spatio-Temporal Modelling of Noise Pollution // International Journal of Integrated Engineering. — 2021. — Vol. 13, no. 3. — doi: 10.30880/ijie.2021.13.03.015.
  15. Oswald Beiler M. R., Filion E. Amtrak Rail Trespasser Analysis using a GIS Space-Time Approach // Public Works Management & Policy. — 2021. — Vol. 26, no. 4. — doi: 10.1177/1087724X211003249.
  16. Pakdil M. E., Çelik R. N. Serverless Geospatial Data Processing Workflow System Design // ISPRS International Journal of Geo-Information. — 2021. — Vol. 11, no. 1. — P. 20. — doi: 10.3390/ijgi11010020.
  17. Papadakis G., Mandilaras G., Mamoulis N., et al. Static and Dynamic Progressive Geospatial Interlinking // ACM Transactions on Spatial Algorithms and Systems. — 2022. — Vol. 8, no. 2. — P. 1–41. — doi: 10.1145/3510025.
  18. Peuquet D. J., Duan N. An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data // International journal of geographical information systems. — 1995. — Vol. 9, no. 1. — P. 7–24. — doi: 10.1080/02693799508902022.
  19. Podany J., Stary V., Tomicek J. 3D surface roughness characteristics for biological applications // Manufacturing Technology. — 2022. — Vol. 21, no. 6. — P. 836–841. — doi: 10.21062/mft.2021.096.
  20. Prince Czarnecki J. M., Jones M. A. The problem with open geospatial data for on‐farm research // Agricultural & Environmental Letters. — 2022. — Vol. 7, no. 1. — doi: 10.1002/ael2.20062.
  21. Rachmatullah R. S., Azizah F. N. A Conceptual Data Model for Flood Based on Cellular Automata Using Moving Object Data Model // Journal of Physics: Conference Series. — 2017. — Vol. 801. — doi: 10.1088/1742-6596/801/1/012037.
  22. Sun K., Zhu Y., Pan P., et al. Geospatial data ontology: the semantic foundation of geospatial data integration and sharing // Big Earth Data. — 2019. — Vol. 3, no. 3. — P. 269–296. — doi: 10.1080/20964471.2019.1661662.
  23. Traxler C., Hesina G. Interacting with big geospatial data // GIM International. — 2017. — Vol. 31. — P. 19–21.
  24. Vorobev A. V., Pilipenko V. A., Krasnoperov R. I., et al. Short-term forecast of the auroral oval position on the basis of the ”virtual globe” technology // Russian Journal of Earth Sciences. — 2020. — Vol. 20, no. 6. — doi: 10.2205/2020es000721.
  25. Vorobev A. V., Vorobeva G. R., Khristodulo O. I. An information system for spatial visualization of prognostic and retrospective data on the probability of observing auroras // Scientific and Technical Journal of Information Technologies, Mechanics and Optics. — 2021. — Vol. 21, no. 2. — P. 225–233. — doi: 10.17586/2226-1494-2021-21-2-225-233.
  26. Vorobev A., Soloviev A., Pilipenko V., et al. An Approach to Diagnostics of Geomagnetically Induced Currents Based on Ground Magnetometers Data // Applied Sciences. — 2022a. — Vol. 12, no. 3. — P. 1522. — doi: 10.3390/app12031522.
  27. Vorobev A., Soloviev A., Pilipenko V., et al. Interactive computer model for aurora forecast and analysis // Solar-Terrestrial Physics. — 2022b. — Vol. 8, no. 2. — P. 84–90. — doi: 10.12737/stp-82202213.
  28. Yu B., Zhang C., Sun J., et al. Massive GIS Spatio-temporal Data Storage Method in Cloud Environment // Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence. — ACM, 2018. — P. 105– 109. — doi: 10.1145/3297156.3297193.
  29. Zhang H., Gao P., Li Z. Improvements to Information Entropy for Raster Spatial Data: A Thermodynamic-based Evaluation // Abstracts of the ICA. — 2019. — Vol. 1. — doi: 10.5194/ica-abs-1-426-2019.
  30. Zhu X., Hu T., Ye X., et al. Development and implementation of a dynamic and 4D GIS based on semantic location model // Geo-spatial Information Science. — 2019. — Vol. 22, no. 3. — P. 193–213. — doi: 10.1080/10095020.2019.1649192.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Vorobev A., Vorobeva G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.