APPLICATION OF DIGITAL CORE ANALYSIS TECHNOLOGY TO STUDY FILTRATION-CAPACITY PROPERTIES AND STRUCTURE OF HIGHLY PERMEABLE ROCKS OF UNDERGROUND GAS STORAGE FACILITIES
- Authors: Khimulia V.V.1
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
- Issue: Vol 24, No 5 (2024)
- Pages: ES5012
- Section: Articles
- URL: https://journals.rcsi.science/1681-1208/article/view/286188
- DOI: https://doi.org/10.2205/2024es000928
- EDN: https://elibrary.ru/ortblj
- ID: 286188
Cite item
Full Text
Abstract
The paper presents the results of pore space studies of highly porous reservoir rocks of underground gas storage (UGS) facilities using the digital analysis of computed microtomography images. The methodology of complex nondestructive analysis of structural and filtration-capacitance properties has been developed. Structural heterogeneities and rock fracturing were evaluated. 3D models of specimen inner space were created on the basis of multi-scale images. The values of open and closed porosity, geodesic tortuosity were calculated, the characteristics of percolation paths in the studied rocks were analyzed for different directions of intrusion. Conclusions were made about the homogeneity of percolation path distribution over the rock volume. The spatial distribution of porosity in the rocks was studied, and porometry analysis of the rocks was carried out. Numerical modeling of filtration processes on the obtained structures in the framework of Stokes approximation for three selected directions in the rock by means of GeoDict software was carried out. It is shown that there is no pronounced dependence of changes in filtration properties in the selected directions on the quantitative characteristics of the pore space. The conclusion is made about the degree of anisotropy of filtration-capacitance properties of rocks. The good correspondence of the characteristics measured in the course of digital analysis with in-situ data and experimentally obtained laboratory values is shown. The described technique allows to simplify data acquisition on the characteristics of fine-grained reservoir rocks, and is designed to extend the approaches to nondestructive analysis of core material. The obtained reservoir properties data is necessary for the operational models development of UGS, clarifying integral reservoir properties and filling hydrodynamic models of hydrocarbon storage and production facilities.
About the authors
Valerii Vladimirovich Khimulia
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Author for correspondence.
Email: valery.khim@gmail.com
ORCID iD: 0000-0003-2116-6483
candidate of physical and mathematical sciences 2021
References
- Алиев З. С. и Котлярова Е. М. Приближенный метод создания и эксплуатации ПХГ в неоднородных по тол- щине пластах с использованием горизонтальных скважин // Экологическая ответственность нефтегазовых предприятий. — Амирит, 2017. — EDN: ZBVNGD.
- Гарайшин А. С. и Кантюков Р. Р. Выбор пласта-аккумулятора для захоронения промышленных стоков Арбузовского ПХГ // Георесурсы. — 2017. — Т. 1, № 19. — С. 82—89. — doi: 10.18599/grs.19.1.13. — EDN: YRWLOV.
- Гришин Д. В. Комплексная технология повышения производительности скважин подземных хранилищ газа в условиях разрушения пласта-коллектора : дис. канд. / Гришин Д. В. — 2019. — EDN: GYWDSR.
- Карев В. И., Коваленко Ю. Ф., Химуля В. В. и др. Физическое моделирование метода направленной разгрузки пласта // Газовая промышленность. — 2021. — № 7. — С. 66—73. — EDN: QJFUXF.
- Кривощеков С. Н. и Кочнев А. А. Определение емкостных свойств пород-коллекторов с применением рентгеновской томографии керна // Master’s journal. — 2014. — Т. 1. — С. 120—128. — EDN: SKFCHR.
- Максимов В. М., Дмитриев Н. М. и Антоневич Ю. С. Эффекты тензорного характера относительных фазовых проницаемостей при взаимном вытеснении газа водой в анизотропных пластах // Георесурсы, геоэнергетика, геополитика. — 2010. — 1(1). — С. 25—34. — EDN: SIYMFR.
- Химуля В. В. и Барков С. О. Анализ изменения внутренней структуры низкопроницаемых пород-коллекторов средствами компьютерной томографии при реализации метода направленной разгрузки пласта // Актуальные проблемы нефти и газа. — 2022. — № 39. — С. 27—42. — doi: 10.29222/ipng.2078-5712.2022-39.art3.
- Химуля В. В., Барков С. О. и Шевцов Н. И. Цифровое исследование характеристик порового пространства и структурных свойств коллектора газоконденсатного месторождения на основе микротомографии // Процессы в геосредах. — 2024. — № 1. — С. 2332—2340. — EDN: CSQXZO.
- Backeberg N. R., Iacoviello F., Rittner M., et al. Quantifying the anisotropy and tortuosity of permeable pathways in clay-rich mudstones using models based on X-ray tomography // Scientific Reports. — 2017. — Vol. 7, no. 1. — doi: 10.1038/s41598-017-14810-1.
- Bali A. and Singh Sh. N. A Review on the Strategies and Techniques of Image Segmentation // 2015 Fifth International Conference on Advanced Computing & Communication Technologies. — IEEE, 2015. — P. 113–120. — doi: 10.1109/ACCT.2015.63.
- Chen M., Bai M. and Roegiers J.-C. Permeability tensors of anisotropic fracture networks // Mathematical Geology. — 1999. — Vol. 31, no. 4. — P. 335–373. — doi: 10.1023/A:1007534523363.
- Clavaud J.-B., Maineult A., Zamora M., et al. Permeability anisotropy and its relations with porous medium structure // Journal of Geophysical Research: Solid Earth. — 2008. — Vol. 113, B1. — doi: 10.1029/2007JB005004.
- Daish C., Blanchard R., Gulati K., et al. Estimation of anisotropic permeability in trabecular bone based on microCT imaging and pore-scale fluid dynamics simulations // Bone Reports. — 2017. — Vol. 6. — P. 129–139. — doi: 10.1016/j.bonr.2016.12.002.
- Holzer L., Marmet Ph., Fingerle M., et al. Tortuosity and Microstructure Effects in Porous Media: Classical Theories, Empirical Data and Modern Methods. — Springer International Publishing, 2023. — doi: 10.1007/978-3-031-30477- 4.
- Khimulia V. V. Digital Examination of Pore Space Characteristics and Structural Properties of a Gas Condensate Field Reservoir on the Basis of CT Images // Proceedings of the 9th International Conference on Physical and Mathematical Modelling of Earth and Environmental Processes. — Springer Nature Switzerland, 2024. — P. 23–34. — doi: 10.1007/978-3-031-54589-4_3.
- Khimulia V. V., Karev V., Kovalenko Yu., et al. Changes in filtration and capacitance properties of highly porous reservoir in underground gas storage: CT-based and geomechanical modeling // Journal of Rock Mechanics and Geotechnical Engineering. — 2024. — Vol. 16, no. 8. — P. 2982–2995. — doi: 10.1016/j.jrmge.2023.12.015.
- Kovářová K., Ševčík R. and Weishauptová Z. Comparison of mercury porosimetry and X-ray microtomography for porosity study of sandstones // Acta Geodynamica et Geomaterialia. — 2012. — Vol. 9, no. 4. — P. 168–178.
- Krivoshchekov S., Kochnev A., Kozyrev N., et al. Factoring Permeability Anisotropy in Complex Carbonate Reservoirs in Selecting an Optimum Field Development Strategy // Energies. — 2022. — Vol. 15, no. 23. — P. 8866. — doi: 10.3390/en15238866.
- Linden S., Wiegmann A. and Hagen H. The LIR space partitioning system applied to the Stokes equations // Graphical Models. — 2015. — Vol. 82. — P. 58–66. — doi: 10.1016/j.gmod.2015.06.003.
- Math2Market GmbH. FlowDict: Single-Phase Fluid Flow. — 2024a. — URL: https://www.math2market.com/geodict- software/geodict-base-modules/simulation/flowdict (visited on 06/02/2024).
- Math2Market GmbH. GeoDict - The Digital Material Laboratory. — 2024b. — URL: https://www.math2market.de (visited on 06/02/2024).
- Mostaghimi P., Blunt M. J. and Bijeljic B. Computations of Absolute Permeability on Micro-CT Images // Mathematical Geosciences. — 2012. — Vol. 45, no. 1. — P. 103–125. — doi: 10.1007/s11004-012-9431-4.
- Pelissou C., Baccou J., Monerie Y., et al. Determination of the size of the representative volume element for random quasi-brittle composites // International Journal of Solids and Structures. — 2009. — Vol. 46, no. 14/15. — P. 2842–2855. — doi: 10.1016/j.ijsolstr.2009.03.015.
- Shreyamsha Kumar B. K. Image denoising based on non-local means filter and its method noise thresholding // Signal, Image and Video Processing. — 2012. — Vol. 7, no. 6. — P. 1211–1227. — doi: 10.1007/s11760-012-0389-y.
- Stenzel O., Pecho O., Holzer L., et al. Predicting effective conductivities based on geometric microstructure characteristics // AIChE Journal. — 2016. — Vol. 62, no. 5. — P. 1834–1843. — doi: 10.1002/aic.15160.
- Taud H., Martinez-Angeles R., Parrot J. F., et al. Porosity estimation method by X-ray computed tomography // Journal of Petroleum Science and Engineering. — 2005. — Vol. 47, no. 3/4. — P. 209–217. — doi: 10.1016/j.petrol.2005.03.009. Versteeg H. K. and Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. —Pearson (England) : Pearson Education Limited, 2007.
Supplementary files
