THE USE OF LANDSAT 8 IN DETECTING POTENTIAL MINERAL ZONES IN WEST NUSA TENGGARA, INDONESIA

Обложка

Цитировать

Полный текст

Аннотация

The remote sensing analysis within the Hu'u District area is known to face a challenge with dense vegetation. The problem affects the accurate reading of spectral reflectance from satellites, influencing the differentiation between potential mineral zones and vegetation. Therefore, this study aims to carry out a remote sensing analysis of densely vegetated areas to differentiate minerals from vegetation and obtain potential mineral zones. The combination band ratios and principal component analysis (PCA) methods are used to acquire potential mineral zones. Furthermore, Landsat 8 images freely available on Google Earth Engine are adopted and the validation is carried out using a drill hole from previous study. The results show that band ratios method cannot distinguish mineral zones from vegetation. However, PCA method can recognize potential mineral zones. This is the result from PCA method with band combination of bands 1, 2, 3, 4, 5, and 6 as the first group and band 2, 4, 5, and 6 as the second group.

Об авторах

Umar Said

Автор, ответственный за переписку.
Email: usaid@stu.kau.edu.sa
ORCID iD: 0009-0000-1440-0740

Rashad A. Bantan

Email: usaid@stu.kau.edu.sa
ORCID iD: 0000-0002-0226-0418

Ammar A. Mannaa

Email: usaid@stu.kau.edu.sa
ORCID iD: 0000-0002-1857-4171

Yasser Taufiq

Email: usaid@stu.kau.edu.sa

Список литературы

  1. Aita, S. K., and A. E. Omar (2021), Exploration of uranium and mineral deposits using remote sensing data and GIS applications, Serbal area, Southwestern Sinai, Egypt, Arabian Journal of Geosciences, 14(21), https://doi.org/10.1007/s12517-021-08568-0. EDN: GGYZDW
  2. Bakardjiev, D., and K. Popov (2015), ASTER spectral band ratios for detection of hydrothermal alterations and ore deposits in the Panagyurishte Ore Region, Central Srednogorie, Bulgaria, Review of the Bulgarian Geological Society, 76(1), 79–88.
  3. Burrows, D. R., M. Rennison, D. Burt, and R. Davies (2020), The Onto Cu-Au Discovery, Eastern Sumbawa, Indonesia: A Large, Middle Pleistocene Lithocap-Hosted High-Sulfidation Covellite-Pyrite Porphyry Deposit, Economic Geology, 115(7), 1385–1412, https://doi.org/10.5382/econgeo.4766. EDN: ITWCFE
  4. Carranza, E. J. M., and M. Hale (2002), Mineral imaging with Landsat Thematic Mapper data for hydrothermal alteration mapping in heavily vegetated terrane, International Journal of Remote Sensing, 23(22), 4827–4852, https://doi.org/10.1080/01431160110115014.
  5. Chen, Q., Z. Zhao, J. Zhou, et al. (2021), New Insights into the Pulang Porphyry Copper Deposit in Southwest China: Indication of Alteration Minerals Detected Using ASTER and WorldView-3 Data, Remote Sensing, 13(14), 2798, https://doi.org/10.3390/rs13142798. EDN: SNFZNM
  6. Fadlin, R. Takahashi, A. Agangi, et al. (2023), Geology, mineralization and calcite-rich potassic alteration at the Humpa Leu East (HLE) porphyry Cu-Au prospect, Hu’u district, Sumbawa Island, Indonesia, Resource Geology, 73(1), https://doi.org/10.1111/rge.12309.
  7. Ghasemi, K., B. Pradhan, and R. Jena (2018), Spatial Identification of Key Alteration Minerals Using ASTER and Landsat 8 Data in a Heavily Vegetated Tropical Area, Journal of the Indian Society of Remote Sensing, 46(7), 1061–1073, https://doi.org/10.1007/s12524-018-0776-0.
  8. Hede, A. N. H., K. Kashiwaya, K. Koike, and S. Sakurai (2015), A new vegetation index for detecting vegetation anomalies due to mineral deposits with application to a tropical forest area, Remote Sensing of Environment, 171, 83–97, https://doi.org/10.1016/j.rse.2015.10.006.
  9. Ombiro, S. O., A. S. Olatunji, E. M. Mathu, and T. R. Ajayi (2021), Application of remote sensing in mapping hydrothermally altered zones in a highly vegetative area - A case study of Lolgorien, Narok County, Kenya, Indian Journal of Science and Technology, 14(9), 810–825, https://doi.org/10.17485/IJST/v14i9.68. EDN: JIAETK
  10. Parcutela, N. E., C. B. Dimalanta, L. T. Armada, et al. (2022), Band processing of Landsat 8-OLI multi-spectral images as a tool for delineating alteration zones associated with porphyry prospects: A case from Suyoc, Benguet, Philippines, IOP Conference Series: Earth and Environmental Science, 1071(1), 012,022, https://doi.org/10.1088/1755-1315/1071/1/012022. EDN: EKIBZQ
  11. Pour, A. B., and M. Hashim (2014), Alteration mineral mapping using ETM+ and hyperion remote sensing data at Bau Gold Field, Sarawak, Malaysia, IOP Conference Series: Earth and Environmental Science, 18, 012,149, https://doi.org/10.1088/1755-1315/18/1/012149.
  12. Setianto, A., B. Raharja, and A. D. Titisari (2021), Application of Landsat 8 Image in An Assessment of Hydrothermal Alteration Mapping in Dense Vegetation: A Case Study from Kokap Area, Kulon Progo, Indonesian Journal on Geoscience, 9(1), 45–60, https://doi.org/10.17014/ijog.9.1.45-60. EDN: OZLRZQ
  13. Shebl, A., and A. Csámer (2021), Lithological, structural and hydrothermal alteration mapping utilizing remote sensing datasets: a case study around Um Salim area, Egypt, IOP Conference Series: Earth and Environmental Science, 942(1), 012,032, https://doi.org/10.1088/1755-1315/942/1/012032. EDN: WZEITF
  14. Shim, K., J. Yu, L. Wang, et al. (2021), Content Controlled Spectral Indices for Detection of Hydrothermal Alteration Minerals Based on Machine Learning and Lasso-Logistic Regression Analysis, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7435–7447, https://doi.org/10.1109/JSTARS.2021.3095926. EDN: OAQOHP
  15. Takodjou Wambo, J. D., S. Ganno, N. A. Afahnwie, et al. (2016), Use of Landsat 7 ETM + Data for the Geological Structure Interpretation: Case Study of the Ngoura-Colomines Area, Eastern Cameroon, Journal of Geosciences and Geomatics, 4(3), 61–72, https://doi.org/10.12691/jgg-4-3-3.
  16. Verdiansyah, O., A. Idrus, L. D. Setijadji, B. Sutopo, and I. G. Sukadana (2021), Mineralogy of hydrothermal breccia cement of Humpa Leu East porphyry copper-gold prospect, Sumbawa Island, Indonesia, E3S Web of Conferences, 325, 04,008, https://doi.org/10.1051/e3sconf/202132504008. EDN: KEURJY
  17. Verdiansyah, O., A. Idrus, L. D. Setijadji, B. Sutopo, and I. G. Sukadana (2023), Elemental mapping and mineral distribution of the Humpa Leu East porphyry samples: An implication to understand the pattern of mineralization, in 4TH INTERNATIONAL CONFERENCE ON EARTH SCIENCE, MINERAL AND ENERGY, vol. 2598, p. 020008, AIP Publishing, https://doi.org/10.1063/5.0126120.
  18. Zhang, T., G. Yi, H. Li, et al. (2016), Integrating Data of ASTER and Landsat-8 OLI (AO) for Hydrothermal Alteration Mineral Mapping in Duolong Porphyry Cu-Au Deposit, Tibetan Plateau, China, Remote Sensing, 8(11), 890, https://doi.org/10.3390/rs8110890.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Said U., Bantan R.A., Mannaa A.A., Taufiq Y., 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».