PROPERTIES OF SHORT-PERIOD INTERNAL WAVES NEAR SVALBARD FROM SENTINEL-1 SATELLITE DATA

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Here we present the results of observations of short-period internal waves (SIWs) in Fram Strait and near Svalbard based on analysis of Sentinel-1 A/B synthetic aperture radar (SAR) data in June-September 2018. Analysis of 1500 spaceborne SAR images allowed to identify 750 surface signatures of SIWs. Maximal number of SIW identifications is observed in August, when both stratification and ice conditions are favorable for SIW generation and identification in satellite data. Background meteorological conditions in summer 2018 favored the northward movement of the ice boundary up to 82,5 ∘ N that allowed to observe SIWs over the Yermak Plateau. Four main regions of SIW observations were identified – deep Fram Strait region (depths over 2000 m), southwestern Yermak Plateau with depth range of 500–1500 m, and two shelf break/upper continental slope regions northwest from Svalbard with depths below 500 m. Analysis of spatial properties of SIWs has shown that the study region is dominated by SIW trains with a mean crest length of 15 km and mean packet length of about 5 km. The largest SIW trains with area of nearly 400 km2 were observed over the Yermak Plateau where tidal currents are maximal.

Авторлар туралы

Igor Kozlov

Marine Hydrophysical Institute RAS

Хат алмасуға жауапты Автор.
Email: ik@mhi-ras.ru
ORCID iD: 0000-0001-6378-8956

Tamara Mihaylichenko

Marine Hydrophysical Institute RAS

Email: goldpineapple2020@gmail.com
ORCID iD: 0000-0002-8696-9722

Larisa Petrenko

Marine Hydrophysical Institute RAS

Email: larcpetr@gmail.com
ORCID iD: 0000-0001-7246-9885
SPIN-код: 7392-7774
Scopus Author ID: 7004614243

Әдебиет тізімі

  1. Зубкова Е. В., Козлов И. Е., Кудрявцев В. Н. Характеристики короткопериодных внутренних волн в Гренландском море по данным спутниковых радиолокационных наблюдений // Ученые записки РГГМУ. — 2016. — Т. 45. EDN: VJLFCT
  2. Козлов И. Е., Кудрявцев В. Н., Сандвен С. Некоторые результаты исследования внутренних волн в Баренцевом море методами радиолокационного зондирования из космоса // Проблемы Арктики и Антарктики. — 2010. — Т. 3, № 86. — С. 60—69. EDN: NDLAFR
  3. Козлов И. Е., Михайличенко Т. В. Оценка фазовой скорости внутренних волн в Арктике по данным последовательных спутниковых РСА-измерений // Современные проблемы дистанционного зондирования Земли из космоса. — 2021. — Т. 18, № 5. — С. 181—192. — doi: 10.21046/2070-7401-2021-18-5-181-192. EDN: WZMNHK
  4. Коняев К. В., Сабинин К. Д. Волны внутри океана. — СПб : Гидрометеоиздат, 1992.
  5. Морозов Е. Г., Писарев С. В. Внутренние волны и образование полыней в море Лаптевых // Доклады Академии Наук. — 2004. — Т. 398, № 2. — С. 255—258. EDN: OPTCGN
  6. Обзор гидрометеорологических процессов в Северном Ледовитом океане. III-й квартал 2018 г. (Ежеквартальный информационный бюллетень) / под ред. И. Е. Фролова. — СПб : ААНИИ, 2018.
  7. Alpers W. Theory of radar imaging of internal waves // Nature. — 1985. — Vol. 314, no. 6008. — P. 245–247. — doi: 10.1038/314245a0.
  8. Bukatov A. A. Free Short-Period Internal Waves in the Arctic Seas of Russia // Physical Oceanography. — 2021. — Vol. 28, no. 6. — doi: 10.22449/1573-160X-2021-6-599-611. EDN: MYIODE
  9. Carr M., Sutherland P., Haase A., et al. Laboratory Experiments on Internal Solitary Waves in Ice-Covered Waters // Geophysical Research Letters. — 2019. — Vol. 46, no. 21. — P. 12230–12238. — doi: 10.1029/2019GL084710. EDN: PZXCRQ
  10. D’Asaro E. A., Morison J. H. Internal waves and mixing in the Arctic Ocean // Deep Sea Research Part A. Oceanographic Research Papers. — 1992. — Vol. 39, no. 2. — S459–S484. — doi: 10.1016/s0198-0149(06)80016-6.
  11. Fer I., Koenig Z., Kozlov I. E., et al. Tidally Forced Lee Waves Drive Turbulent Mixing Along the Arctic Ocean Margins // Geophysical Research Letters. — 2020. — Vol. 47, no. 16. — doi: 10.1029/2020GL088083. EDN: UAAIHY
  12. Hattermann T., Isachsen P. E., Appen W.-J. von, et al. Eddy-driven recirculation of Atlantic Water in Fram Strait // Geophysical Research Letters. — 2016. — Vol. 43, no. 7. — P. 3406–3414. — doi: 10.1002/2016GL068323. EDN: XTQRNV
  13. Johannessen J. A., Johannessen O. M., Svendsen E., et al. Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 Marginal Ice Zone Experiments // Journal of Geophysical Research: Oceans. — 1987. — Vol. 92, no. C7. — P. 6754–6772. — doi: 10.1029/JC092iC07p06754.
  14. Kopyshov I., Kozlov I., Shiryborova A., et al. Properties of Short-Period Internal Waves in the Kara Gates Strait Revealed from Spaceborne SAR Data // Russian Journal of Earth Sciences. — 2023. — P. 1–11. — doi: 10.2205/2023ES02SI10. EDN: QJSLVL
  15. Kozlov I., Kudryavtsev V., Zubkova E., et al. SAR observations of internal waves in the Russian Arctic seas // 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). — IEEE, 2015a. — P. 947–949. — doi: 10.1109/IGARSS.2015.7325923. EDN: WSMYXZ
  16. Kozlov I. E., Atadzhanova O. A., Zimin A. V. Internal Solitary Waves in the White Sea: Hot-Spots, Structure, and Kinematics from Multi-Sensor Observations // Remote Sensing. — 2022. — Vol. 14, no. 19. — P. 4948. — doi: 10.3390/rs14194948. EDN: FUMMQV
  17. Kozlov I. E., Kopyshov I. O., Frey D. I., et al. Multi-Sensor Observations Reveal Large-Amplitude Nonlinear Internal Waves in the Kara Gates, Arctic Ocean // Remote Sensing. — 2023. — Vol. 15, no. 24. — P. 5769. — doi: 10.3390/rs15245769. EDN: LBAVOR
  18. Kozlov I. E., Krek E. V., Kostianoy A. G., et al. Remote Sensing of Ice Conditions in the Southeastern Baltic Sea and in the Curonian Lagoon and Validation of SAR-Based Ice Thickness Products // Remote Sensing. — 2020. — Vol. 12, no. 22. — P. 3754. — doi: 10.3390/rs12223754. EDN: LOFVIZ
  19. Kozlov I. E., Kudryavtsev V. N., Zubkova E. V., et al. Characteristics of short-period internal waves in the Kara Sea inferred from satellite SAR data // Izvestiya, Atmospheric and Oceanic Physics. — 2015b. — Vol. 51, no. 9. — P. 1073–1087. — doi: 10.1134/S0001433815090121. EDN: WTNAJB
  20. Kozlov I. E., Zubkova E. V., Kudryavtsev V. N. Internal Solitary Waves in the Laptev Sea: First Results of Spaceborne SAR Observations // IEEE Geoscience and Remote Sensing Letters. — 2017. — Vol. 14, no. 11. — P. 2047–2051. — doi: 10.1109/LGRS.2017.2749681. EDN: XXDKIP
  21. Magalhaes J. M., Da Silva J. C. B. Internal Solitary Waves in the Andaman Sea: New Insights from SAR Imagery // Remote Sensing. — 2018. — Vol. 10, no. 6. — P. 861. — doi: 10.3390/RS10060861. EDN: YJISOD
  22. Marchenko A. V., Morozov E. G., Kozlov I. E., et al. High-amplitude internal waves southeast of Spitsbergen // Continental Shelf Research. — 2021. — Vol. 227. — P. 104523. — doi: 10.1016/j.csr.2021.104523. EDN: VBYDRH
  23. Morozov E. G., Marchenko A. V., Filchuk K. V., et al. Sea ice evolution and internal wave generation due to a tidal jet in a frozen sea // Applied Ocean Research. — 2019. — Vol. 87. — P. 179–191. — doi: 10.1016/j.apor.2019.03.024. EDN: EPBDLW
  24. Padman L., Dillon T. M. Turbulent mixing near the Yermak Plateau during the Coordinated Eastern Arctic Experiment // Journal of Geophysical Research: Oceans. — 1991. — Vol. 96, no. C3. — P. 4769–4782. — doi: 10.1029/90JC02260.
  25. Petrenko L. A., Kozlov I. E. Variability of the Marginal Ice Zone and Eddy Generation in Fram Strait and near Svalbard in Summer Based on Satellite Radar Observations // Physical Oceanography. — 2023. — Vol. 30, no. 5. — P. 594–611. EDN: QZZVDD
  26. Petrusevich V. Y., Dmitrenko I. A., Kozlov I. E., et al. Tidally-generated internal waves in Southeast Hudson Bay // Continental Shelf Research. — 2018. — Vol. 167. — P. 65–76. — doi: 10.1016/j.csr.2018.08.002. EDN: YBLOZN
  27. Plueddemann A. J. Internal wave observations from the Arctic environmental drifting buoy // Journal of Geophysical Research: Oceans. — 1992. — Vol. 97, no. C8. — P. 12619–12638. — doi: 10.1029/92JC01098.
  28. Rippeth T. P., Lincoln B. J., Lenn Y.-D., et al. Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography // Nature Geoscience. — 2015. — Vol. 8, no. 3. — P. 191–194. — doi: 10.1038/ngeo2350. EDN: URUGSD
  29. Rippeth T. P., Vlasenko V., Stashchuk N., et al. Tidal Conversion and Mixing Poleward of the Critical Latitude (an Arctic Case Study) // Geophysical Research Letters. — 2017. — Vol. 44, no. 24. — doi: 10.1002/2017GL075310. EDN: VCXQEL
  30. Sandven S., Johannessen O. M. High-frequency internal wave observations in the marginal ice zone // Journal of Geophysical Research: Oceans. — 1987. — Vol. 92, no. C7. — P. 6911–6920. — doi: 10.1029/JC092iC07p06911.
  31. Vlasenko V., Stashchuk N., Hutter K., et al. Nonlinear internal waves forced by tides near the critical latitude // Deep Sea Research Part I: Oceanographic Research Papers. — 2003. — Vol. 50, no. 3. — P. 317–338. — doi: 10.1016/S0967-0637(03)00018-9. EDN: LIERVN
  32. Zhang Y., Hong M., Zhang Y., et al. Characteristics of Internal Solitary Waves in the Timor Sea Observed by SAR Satellite // Remote Sensing. — 2023. — Vol. 15, no. 11. — P. 2878. — doi: 10.3390/rs15112878. EDN: RZIGXK
  33. Zimin A. V., Kozlov I. E., Atadzhanova O. A., et al. Monitoring short-period internal waves in the White Sea // Izvestiya, Atmospheric and Oceanic Physics. — 2016. — Vol. 52, no. 9. — P. 951–960. — doi: 10.1134/S0001433816090309. EDN: YVDYUR

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Козлов И.E., Михайличенко Т.V., Петренко Л.A., 2024

Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.