ASSESSMENT OF THE IN-SITU STRESS STATE OF THE CARBONATE ROCK MASS AT AN OIL FIELD

Capa

Citar

Texto integral

Resumo

The paper presents an algorithm for reconstruction of stress state parameters of rock massif based on data on natural fractures. For one well developing an oil field, the directions of the principal in-situ stresses, their relative magnitudes, and the strength of the rocks in the near-wellbore space were reconstructed. Stress inversion results are in agreement with other methods of stress estimation, in particular, with the results of the mini-hydraulic fracture test. The inverse problem of stress state estimation is solved using the Monte Carlo method. An algorithm of applying the apparatus of mathematical statistics – the method of moments for determining distribution parameters from the Pearson distribution family – to quantify the ambiguity of the estimation of the directions of the principal stresses and their relative magnitudes is presented. The proposed algorithm can be used for independent reconstruction of stresses for carbonate rocks, provided that there is information about the conductivity of fractures in the rocks of the near-wellbore space to further improve the quality of one-dimensional and three-dimensional geomechanical modelling.

Sobre autores

Eduard Ziganshin

Kazan (Volga) Federal University

Email: ERZiganshin@kpfu.ru
ORCID ID: 0000-0001-9184-2446
candidate of geological and mineralogical sciences 2022-2022

Nikita Dubinya

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Autor responsável pela correspondência
Email: ERZiganshin@kpfu.ru
ORCID ID: 0000-0002-1599-8737

Elena Novikova

Institute of Geosphere Dynamics (IDG RAS); Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: helenvn97@gmail.com
ORCID ID: 0000-0001-6354-4652
Código SPIN: 7391-8163
Scopus Author ID: 57324010500

Ivan Voronov

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Email: iavoronov@ifz.ru
ORCID ID: 0009-0001-9159-9017

Bibliografia

  1. Дубиня Н. В. Обзор скважинных методов изучения напряженного состояния верхних слоев Земной коры // Физика Земли. — 2019. — № 2. — С. 137—155. — doi: 10.31857/S0002-333720192137-155. EDN: IBPQZY
  2. Дубиня Н. В., Ежов К. А. Уточнение профилей горизонтальных напряжений в окрестности скважин по геометрическим характеристикам трещин в породах околоскважинного пространства // Геофизические исследования. — 2017. — Т. 18, № 2. — С. 5—26. — doi: 10.21455/gr2017.2-1. EDN: YSKVVP
  3. Дубиня Н. В., Тихоцкий С. А. О методе решения обратной задачи восстановления напряженно-деформированного состояния массива горных пород по данным о естественной трещиноватости // Физика Земли. — 2022. — № 4. — С. 112—134. — doi: 10.31857/S0002333722040020. EDN: ZRAMCQ
  4. Новикова Е. В., Дубиня Н. В. Об устойчивости решения обратной задачи реконструкции напряженного состояния геологической среды на основании анализа естественной трещиноватости // Процессы в геосредах. — 2023. — Т. 38, № 4. — С. 2240—2251.
  5. Dubinya N. V. Spatial orientations of hydraulically conductive shear natural fractures for an arbitrary stress state: An analytical study of governing geomechanical factors // Journal of Petroleum Science and Engineering. — 2022. — Vol. 212. — P. 110288. — doi: 10.1016/j.petrol.2022.110288. EDN: FPQIOI
  6. Elderton W. P., Johnson N. L. Systems of Frequency Curves. — Cambridge University Press, 1969. — DOI: 10.1017/ CBO9780511569654.
  7. Funato A., Ito T. A new method of diametrical core deformation analysis for in-situ stress measurements // International Journal of Rock Mechanics and Mining Sciences. — 2017. — Vol. 91. — P. 112–118. — doi: 10.1016/j.ijrmms.2016.11.002.
  8. Gaarenstroom L., Tromp R. A. J., Brandenburg A. M. Overpressures in the Central North Sea: implications for trap integrity and drilling safety // Geological Society, London, Petroleum Geology Conference Series. — 1993. — Vol. 4, no. 1. — P. 1305–1313. — doi: 10.1144/0041305.
  9. Galybin A. N., Mokhel A. N. Borehole breakout in rocks with strength anisotropy // 1st Australian Congress on Applied Mechanics: ACAM-96. — Australia : Institution of Engineers, 1996. — P. 943–948.
  10. Higgins S., Goodwin S., Donald A., et al. Anisotropic Stress Models Improve Completion Design in the Baxter Shale // SPE Annual Technical Conference and Exhibition. — SPE, 2008. — doi: 10.2118/115736-ms.
  11. Ito T., Fujii R., Evans K. F., et al. Estimation of Stress Profile with Depth from Analysis of Temperature and Fracture Orientation Logs in a 3.6 km Deep Well at Soultz, France // All Days. — SPE, 2002. — doi: 10.2118/78185-MS.
  12. Ljunggren C., Chang Y., Janson T., et al. An overview of rock stress measurement methods // International Journal of Rock Mechanics and Mining Sciences. — 2003. — Vol. 40, no. 7/8. — P. 975–989. — doi: 10.1016/j.ijrmms.2003.07.003. EDN: XRMSON
  13. Ostadhassan M., Zeng Z., Zamiran S. Geomechanical modeling of an anisotropic formation - Bakken case study // 46th US Rock Mechanics / Geomechanics Symposium. — American Rock Mechanics Association, 2012. — P. 2631–2645.
  14. Prats M. Effect of Burial History on the Subsurface Horizontal Stresses of Formations Having Different Material Properties // Society of Petroleum Engineers Journal. — 1981. — Vol. 21, no. 06. — P. 658–662. — doi: 10.2118/9017-pa.
  15. Shkuratnik V. L., Kravchenko O. S., Filimonov Y. L. Stress Memory in Acoustic Emission of Rock Salt Samples in Cyclic Loading under Variable Temperature Effects // Journal of Mining Science. — 2020. — Vol. 56, no. 2. — P. 209–215. — doi: 10.1134/s1062739120026662. EDN: VDVRQK
  16. Sinha B. K., Wendt A. S. Estimation of horizontal stress magnitudes using sonic data from vertical and deviated wellbores in a depleted reservoir // Geological Society, London, Special Publications. — 2014. — Vol. 409, no. 1. — P. 67–91. — doi: 10.1144/SP409.9.
  17. Thiercelin M. J., Plumb R. A. Core-Based Prediction of Lithologic Stress Contrasts in East Texas Formations // SPE Formation Evaluation. — 1994. — Vol. 9, no. 04. — P. 251–258. — doi: 10.2118/21847-pa.
  18. Zhang S., Ma X., Zoback M. Determination of the crustal friction and state of stress in deep boreholes using hydrologic indicators // Rock Mechanics Bulletin. — 2023. — Vol. 2, no. 1. — P. 100024. — doi: 10.1016/j.rockmb.2022.100024. EDN: XDJPFQ
  19. Zoback M. D. Reservoir Geomechanics. — Cambridge University Press, 2007.
  20. Zoback M. D., Barton C. A., Brudy M., et al. Determination of stress orientation and magnitude in deep wells // International Journal of Rock Mechanics and Mining Sciences. — 2003. — Vol. 40, no. 7/8. — P. 1049–1076. — doi: 10.1016/j.ijrmms.2003.07.001. EDN: ERYITF

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Зиганшин Э.R., Дубиня Н.V., Новикова Е.V., Воронов И.A., 2024

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.