SUBSIDENCE AND SEDIMENTATION DYNAMICS OF THE LAKESIDE PART OF THE RITA RIVER DELTA IN THE RUPTURE ZONE, THE NORTHWESTERN COAST OF LAKE BAIKAL
- Authors: Lunina O.V.1, Gladkov A.A.1,2
-
Affiliations:
- Institute of the Earth’s Crust, Siberian Branch of Russian Academy of Sciences
- Center for the Development of Continuing Education of Children, Ministry of Education of Irkutsk Region
- Issue: Vol 23, No 6 (2023)
- Pages: ES6006
- Section: Articles
- URL: https://journals.rcsi.science/1681-1208/article/view/265396
- DOI: https://doi.org/10.2205/2023ES000874
- EDN: https://elibrary.ru/htcabo
- ID: 265396
Cite item
Full Text
Abstract
Delta subsidence is one of the key problems of human life as these areas are developed quite fast. The process is natural and depends on many factors, the influence of which has not yet been sufficiently studied. This study is aimed to identify changes in the earth’s surface of the lakeside part of the Rita River delta on the northwestern coast of Lake Baikal, where a zone of seismically induced gravitational ruptures were recently mapped. To assess topographic changes, we used the calculation of the difference in multi-temporal digital surface models (DSM) obtained in two local areas from ultra-high resolution unmanned aerial photography in 2020 and 2021. We established that the subsidence of the lakeside part of the delta occurred on average by 5–10 cm over 11 months and 19 days. These values are associated with natural sediment compaction. In places of their accumulation, aggradation occurs by similar values, compensating the balance of deposits. In the seismically induced gravitational failures in the absence of alluvium, subsidence reached 33–37 cm, which indicates active endogenous and exogenous processes in the Kocherikovsky fault zone. The largest negative and positive vertical topographic changes up to 40 cm occurred within the beach and were associated with wave-cutting activity. The most extreme swampy part of Cape Rytyi experienced the maximum subsidence per a year. The greatest accumulation of alluvium occurred in the southern section of the Rita River delta in a settling expressed in the surface and coinciding with the zone of recent ruptures, as well as in an accumulative flow that overlaps the zone of surface deformations. With the exception of this part, discontinuities are well exhibited on DSM that means they continue to develop despite intensive sedimentation. Comparison of multi-temporal DSM and DTM by calculating the difference in elevation for each node (pixel) of the model is a promising and inexpensive method for monitoring surface deformations.
Keywords
About the authors
O. V. Lunina
Institute of the Earth’s Crust, Siberian Branch of Russian Academy of Sciences
Email: lounina@inbox.ru
ORCID iD: 0000-0001-7743-8877
Scopus Author ID: 6603849679
doctor of geological and mineralogical sciences 2015
A. A. Gladkov
Institute of the Earth’s Crust, Siberian Branch of Russian Academy of Sciences; Center for the Development of Continuing Education of Children, Ministry of Education of Irkutsk Region
Email: anton90ne@rambler.ru
ORCID iD: 0000-0003-4235-6745
candidate of geological and mineralogical sciences
References
- Agisoft LLC. Руководство пользователя Agisoft Metashape. Standart Edition, Version 1.7. — 2021. — (дата обращения 29.06.2023). https://www.agisoft.com/pdf/metashape_1_7_ru.pdf.
- Бабич Д. Б., Виноградова Н. Н., Иванов В. В. и др. Дельты рек, впадающих в озера: морфогенетические типы и современная динамика // Вестник Московского университета. Серия 5. География. — 2015. — Т. 4. — С. 18—26.
- Быков В. Г. Уединенные сдвиговые зоны в зернистой среде // Акустический журнал. — 1999. — Т. 45, № 2. — С. 169—173.
- Ладохин Н. П., Гречищев Е. К. Результаты изучения современных тектонических движений берегов оз. Байкал // Труды Восточно-Сибирского геологического института СО АН СССР. — 1961. — Т. 3. — С. 17—25.
- Лебедева М. А., Саньков В. А., Захаров А. И. и др. Активные деформации в зоне влияния разломов Мондинской впадины по данным РСА-интерферометрии // Вестник СибГАУ. — 2013. — Т. 5, № 51. — С. 63—65.
- Лунина О. В., Гладков А. А. Феномен разрывообразования в дельтовых отложениях мыса Рытый на северо-западном побережье оз. Байкал // Геология и геофизика. — 2022. — Т. 62, № 2. — С. 149—162. — doi: 10.15372/gig2020204.
- Орлов А. П. Об изменении уровня оз. Байкал // Известия Сибирского отдела Императорского РГО. — 1870. — Т. 1, № 2. — С. 6—18.
- Потемкина Т. Г., Потемкин В. Л. Сток наносов озера Байкал: изменения и тенденции // Известия Иркутского государственного университета. Серия «Науки о Земле». — 2023. — Т. 43. — С. 79—90. — doi: 10.26516/2073- 3402.2023.43.79.
- Хлыстов О. М., Кононов Е. Е., Хабуев А. В. и др. Геолого-геоморфологические особенности Посольской банки и Кукуйской гривы озера Байкал // Геология и геофизика. — 2016. — Т. 57, № 12. — С. 2229—2239. — doi: 10.15372/GiG20161208.
- Черский И. Д. О результатах исследований оз. Байкал // Записки Императорского РГО по общей географии. — 1886. — Т. 15, № 3. — С. 1—48.
- Bearzot F., Garzonio R., Di Mauro B., et al. Kinematics of an Alpine rock glacier from multi-temporal UAV surveys and GNSS data // Geomorphology. — 2022. — Vol. 402. — P. 108116. — doi: 10.1016/j.geomorph.2022.108116.
- Dong T. Y., Nittrouer J. A., Il’icheva E., et al. Controls on gravel termination in seven distributary channels of the Selenga River Delta, Baikal Rift basin, Russia // Geological Society of America Bulletin. — 2016. — Vol. 128, no. 7/8. — P. 1297–1312. — doi: 10.1130/B31427.1.
- Higgins S. A. Review: Advances in delta-subsidence research using satellite methods // Hydrogeology Journal. — 2015. — Vol. 24, no. 3. — P. 587–600. — doi: 10.1007/s10040-015-1330-6.
- Higgins S. A., Overeem I., Steckler M. S., et al. InSAR measurements of compaction and subsidence in the Ganges Brahmaputra Delta, Bangladesh // Journal of Geophysical Research: Earth Surface. — 2014. — Vol. 119, no. 8. — P. 1768–1781. — doi: 10.1002/2014JF003117.
- Howard K. W. F., Zhou W. Overview of ground fissure research in China // Environmental Earth Sciences. — 2019. — Vol. 78, no. 3. — doi: 10.1007/s12665-019-8114-6.
- Hu L., Navarro-Hernández M. I., Liu X., et al. Analysis of regional large-gradient land subsidence in the Alto Guadalentín Basin (Spain) using open-access aerial LiDAR datasets // Remote Sensing of Environment. — 2022. — Vol. 280. — P. 113218. — doi: 10.1016/j.rse.2022.113218.
- Liu Y., Liu J., Xia X., et al. Land subsidence of the Yellow River Delta in China driven by river sediment compaction // Science of The Total Environment. — 2021. — Vol. 750. — P. 142165. — doi: 10.1016/j.scitotenv.2020.142165.
- Long Z., Yumei L., Yong L., et al. An extension-dominant 9-km-long ground failure along a buried geological fault on the eastern Beijing Plain, China // Engineering Geology. — 2021. — Vol. 289. — P. 106168. — doi: 10.1016/j.enggeo.2021.106168.
- Loucks D. P. Developed river deltas: are they sustainable? // Environmental Research Letters. — 2019. — Vol. 14, no. 11. — P. 113004. — doi: 10.1088/1748-9326/ab4165.
- Lukhnev A. V., San’kov V. A., Miroshnichenko A. I., et al. GPS-measurements of recent crustal deformation in the junction zone of the rift segments in the central Baikal rift system // Russian Geology and Geophysics. — 2013. — Vol. 54, no. 11. — P. 1417–1426. — doi: 10.1016/j.rgg.2013.10.010.
- Rossini M., Di Mauro B., Garzonio R., et al. Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry // Geomorphology. — 2018. — Vol. 304. — P. 159–172. — doi: 10.1016/j.geomorph.2017.12.039.
- Schmidt C. W. Delta Subsidence: An Imminent Threat to Coastal Populations // Environmental Health Perspectives. — 2015. — Vol. 123, no. 8. — doi: 10.1289/ehp.123-A204.
- Tessler Z. D., Vörösmarty C. J., Overeem I., et al. A model of water and sediment balance as determinants of relative sea level rise in contemporary and future deltas // Geomorphology. — 2018. — Vol. 305. — P. 209–220. — doi: 10.1016/j.geomorph.2017.09.040.
- Valkaniotis S., Papathanassiou G., Ganas A. Mapping an earthquake-induced landslide based on UAV imagery; case study of the 2015 Okeanos landslide, Lefkada, Greece // Engineering Geology. — 2018. — Vol. 245. — P. 141–152. — doi: 10.1016/j.enggeo.2018.08.010.
- Yang Y.-H., Xu Q., Hu J.-C., et al. Source Model and Triggered Aseismic Faulting of the 2021 Mw 7.3 Maduo Earthquake Revealed by the UAV-Lidar/Photogrammetry, InSAR, and Field Investigation // Remote Sensing. — 2022. — Vol. 14, no. 22. — P. 5859. — doi: 10.3390/rs14225859.
- Zervopoulou A., Chatzipetros A., Tsiokos L., et al. Non-seismic surface faulting: the peraia fault case study (Thessaloniki, N. Greece) // 4th International Conference on Earthquake Geotechnical Engineering, Paper No. 1610. — Thessaloniki (Greece) : ISSMGE, 2007.
- Zhong W., Chu T., Tissot P., et al. Integrated coastal subsidence analysis using InSAR, LiDAR, and land cover data // Remote Sensing of Environment. — 2022. — Vol. 282. — P. 113297. — doi: 10.1016/j.rse.2022.113297.
Supplementary files
