WAVEFORM OF THE REFLECTED IMPULSE AT THE OBLIQUE SOUNDING OF THE SEA SURFACE

Cover Page

Cite item

Full Text

Abstract

The height of sea waves is one of the most important characteristics describing the wave climate of the ocean. At the present, the main radar for remote measurement of wave heights is an altimeter. Measurements are performed at the vertical sounding (incidence angle equal to zero). The Brown model was developed to describe the waveform of the reflected impulse at the vertical sounding. There is no theoretical model for the case of oblique sounding. In the Kirchhoff approximation, the theoretical task about waveform of the reflected impulse at oblique sounding was considered. In the result of the investigation, the analytical formula for the waveform of the reflected impulse for oblique sounding at the small incidence angles (< 12◦) for a microwave radar with a narrow antenna beam was obtained. The waveform of the reflected impulse depends on the width of antenna beam, incidence angle, impulse duration, significant wave height (SWH), altitude of the radar, mean square slopes of large-scale, in comparison with radar wavelength, sea waves. It is shown that possibility exist to retrieve SWH using waveform the reflected impulse at the oblique sounding.

About the authors

V. Karaev

Institute of Applied Physics of the Russian Academy of Sciences

Email: volody@ipfran.ru
ORCID iD: 0000-0002-4054-4905

Yu. Titchenko

Institute of Applied Physics of the Russian Academy of Sciences

Email: yuriy@ipfran.ru
ORCID iD: 0000-0001-7762-7731
ResearcherId: S-7854-2016
candidate of physical and mathematical sciences

M. Panfilova

Institute of Applied Physics of the Russian Academy of Sciences

ORCID iD: 0000-0002-3795-0347

E. Meshkov

Institute of Applied Physics of the Russian Academy of Sciences

ORCID iD: 0000-0002-5353-7528

D. Kovaldov

Institute of Applied Physics of the Russian Academy of Sciences

Email: d.kovaldov@ipfran.ru
ORCID iD: 0000-0002-9535-4949

References

  1. Amarouche, L., P. Thibaut, O. Z. Zanife, J.-P. Dumont, P. Vincent, and N. Steunou (2004), Improving the Jason-1 Ground Retracking to Better Account for Attitude Effects, Marine Geodesy, 27(1–2), 171–197, https://doi.org/10.1080/01490410490465210.
  2. Barrick, D. (1968), Rough Surface Scattering Based on the Specular Point Theory, IEEE Transactions on Antennas and Propagation, 16(4), 449–454, https://doi.org/10.1109/TAP.1968.1139220.
  3. Bass, F. G., and I. M. Fuks (1979), Wave Scattering from Statistically Rough Surfaces, Elsevier, https://doi.org/10.1016/C2013-0-05724-6.
  4. Brown, G. (1977), The average impulse response of a rough surface and its applications, IEEE Transactions on Antennas and Propagation, 25(1), 67–74, https://doi.org/10.1109/TAP.1977.1141536.
  5. Fu, L.-L., and A. Cazenave (Eds.) (2000), Satellite Altimetry and Earth Sciences. A Handbook of Techniques and Applications (International Geophysics), 463 pp., Academic Press.
  6. Fu, L.-L., D. Alsdorf, E. Rodriguez, et al. (2009), The SWOT (Surface Water and Ocean Topography) Mission: Spaceborne Radar Interferometry for Oceanographic and Hydrological Applications, in OCEANOBS’09 Conference.
  7. Fuks, I. (1966), On the theory of radio wave scattering by the rough sea surface, Izvestiya VUZov. Radiofizika, 9(5), 876–887 (in Russian).
  8. Garnaker’yan, A. A. (1978), Radiolocation of the sea surface, Izdatel’stvo Rostovskogo universiteta, Rostov-on-Don (in Russian).
  9. Hauser, D., E. Soussi, E. Thouvenot, and L. Rey (2001), SWIMSAT: A Real-Aperture Radar to Measure Directional Spectra of Ocean Waves from Space-Main Characteristics and Performance Simulation, Journal of Atmospheric and Oceanic Technology, 18(3), 421–437, https://doi.org/10.1175/1520-0426(2001)0182.0.co;2.
  10. Hauser, D., C. Tison, T. Amiot, L. Delaye, N. Corcoral, and P. Castillan (2017), SWIM: The First Spaceborne Wave Scatterometer, IEEE Transactions on Geoscience and Remote Sensing, 55(5), 3000–3014, https://doi.org/10.1109/TGRS.2017.2658672.
  11. Isakovich, M. A. (1952), Scattering of waves from a statistically rough surface, Journal of Experimental and Theoretical Physics, 23, 305–314 (in Russian).
  12. Japan Aerospace Exploration Agency (2014), GPM Data Utilization Handbook. Version 1.0, JAXA, Japan.
  13. Ka, M.-H., and A. I. Baskakov (2015), Limiting accuracy of the dual-frequency microwave interferometry measurement for sea surface monitoring from space, Journal of Electromagnetic Waves and Applications, 29(16), 2199–2206, https://doi.org/10.1080/09205071.2015.1062806.
  14. Ka, M.-H., A. I. Baskakov, S.-Y. Jeon, I. Paek, and J. Jang (2016), Multi-frequency precision radar altimetry from space for estimation of sea surface state, Electronics Letters, 52(21), 1804–1805, https://doi.org/10.1049/el.2016.2356.
  15. Karaev, V. Yu., M. B. Kanevsky, P. D. Cotton, and P. G. Challenor (2002), Technical Note Is it possible to measure ocean surface slopes with a microwave radar at nadir probing?, International Journal of Remote Sensing, 23(16), 3251–3262, https://doi.org/10.1080/01431160110114970.
  16. Karaev, V. Yu., M. B. Kanevsky, G. N. Balandina, P. Challenor, C. Gommenginger, and M. Srokosz (2005), The Concept of a Microwave Radar with an Asymmetric Knifelike Beam for the Remote Sensing of Ocean Waves, Journal of Atmospheric and Oceanic Technology, 22(11), 1809–1820, https://doi.org/10.1175/JTECH1807.1.
  17. Karaev, V. Yu., M. E. Meshkov, and Y. L. Titchenko (2014), Underwater Acoustic Altimeter, Radiophysics and Quantum Electronics, 57(7), 488–497, https://doi.org/10.1007/s11141-014-9531-8.
  18. Kurjanov, B. (1962), Scattering of sound on a rough surface with two types of roughness, Akustichesky zhurnal, 8(3), 325–333 (in Russian).
  19. Meshkov, E. M., and V. Y. Karaev (2004), Determination of the Parameters of Sea-Surface Roughness Using the Doppler Spectrum of a Microwave Radar Signal Reflected from a Water Surface, Radiophysics and Quantum Electronics, 47(3), 205–217, https://doi.org/10.1023/B:RAQE.0000036565.31198.87.
  20. NASA (2024), SWOT: Surface Water and Ocean Topography, https://swot.jpl.nasa.gov/.
  21. Raney, R. K. (1998), The delay/Doppler radar altimeter, IEEE Transactions on Geoscience and Remote Sensing, 36(5), 1578–1588, https://doi.org/10.1109/36.718861.
  22. Raney, R. K. (2012), CryoSat SAR-Mode Looks Revisited, IEEE Geoscience and Remote Sensing Letters, 9(3), 393–397, https://doi.org/10.1109/LGRS.2011.2170052.
  23. Tikhonov, V. (1982), Statistical radio engineering, 624 pp., Radio i Svyaz, Moscow.
  24. Titchenko, Yu., G. Jie, V. Karaev, K. Ponur, M. Ryabkova, V. Baranov, V. Ocherednik, and Y. He (2024), Preliminary Performance Assessment of the Wave Parameter Retrieval Algorithm from the Average Reflected Pulse, Remote Sensing, 16(2), 418, https://doi.org/10.3390/rs16020418.
  25. Valenzuela, G. R. (1978), Theories for the interaction of electromagnetic and oceanic waves? A review, Boundary-Layer Meteorology, 13(1–4), 61–85, https://doi.org/10.1007/BF00913863.
  26. Wright, J. (1968), A new model for sea clutter, IEEE Transactions on Antennas and Propagation, 16(2), 217–223, https://doi.org/10.1109/TAP.1968.1139147.
  27. Zieger, A. R., D. W. Hancock, G. S. Hayne, and C. L. Purdy (1991), NASA radar altimeter for the TOPEX/POSEIDON Project, Proceedings of the IEEE, 79(6), 810–826, https://doi.org/10.1109/5.90160.
  28. Zubkovich, S. (1968), Statistical characteristics of radio signals reflected from the earth’s surface, 224 pp., Sovetskoe radio, Moscow.

Copyright (c) 2024 Karaev V., Titchenko Y., Panfilova M., Meshkov E., Kovaldov D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies