STERIC OSCILLATIONS OF THE BALTIC SEA LEVEL

Cover Page

Cite item

Full Text

Abstract

The main purpose of the paper is to estimate the capabilities of NEMO 3.6 regional reanalysis data for a realistic description of the Baltic Sea steric level oscillations, the spatio-temporal structure research and causes of modern sea level changes, induced by fluctuations in water density, in the range of interannual and seasonal variability scales. Comparison of the steric level oscillations series calculated from contact measurements of temperature and salinity at oceanographic stations and from regional reanalysis data is carried out by evaluating various statistical accuracy criteria. The paper shows that the reanalysis data allow reproducing the Baltic Sea steric level oscillations quite accurately. Estimates of linear trends indicate that in the period 1993–2020 in the open Baltic and in the west of the Gulf of Finland, the steric sea level is mainly decreasing, while in the Gulf of Bothnia the steric level is increasing. Harmonic analysis of steric level oscillations showed that the annual harmonic a in the range of seasonal variability makes a predominant contribution to steric level oscillations, its amplitude significantly exceeds the amplitudes of the harmonics sa, ta and qa. The thermosteric component has the main influence on seasonal steric level oscillations, and only in the south-west of the sea there is a significant influence of the halosteric component. During the period under review, positive linear trends were observed in the amplitudes changes of the harmonics a, sa, ta and qa in most regions of the Baltic Sea, however, in the south-west of the open Baltic, a decrease in the amplitudes of all four harmonics of seasonal steric level oscillations was observed in the south-west part of the Open Baltic Sea. In conclusion, based on the obtained results, it is assumed that the identified modern regional changes in the Baltic Sea steric level oscillations are associated with an increase in air temperature, an increase in precipitation, a decrease in wind intensity, a desalination of the upper quasi-homogeneous layer and an increase in deep and near-bottom waters salinity caused by water exchange with salty waters of the North Sea.

About the authors

E. A. Zakharchuk

Sankt-Petersburg State University; Murmansk Marine Biological Institute of the Kola Science Center of the Russian Academy of Sciences

ORCID iD: 0000-0001-6079-5739

V. N. Sukhachev

N.N.Zubov’s State Oceanographic Institute, Roshydromet; St. Petersburg State University

Email: Syhachev@mail.ru
ORCID iD: 0000-0003-4821-4342
Scopus Author ID: 55969236600
ResearcherId: N-7470-2015

N. A. Tihonova

N.N. Zubov State Oceanographic Institute, Roshydromet; Saint-Petersburg State University

ORCID iD: 0000-0002-4546-4920
Scopus Author ID: 11239410500
ResearcherId: I-4647-2015

E. N. Litina

Saint-Petersburg State University; N.N. Zubov State Oceanographic Institute

ORCID iD: 0000-0003-1069-1768
Scopus Author ID: 56534229800
ResearcherId: I-4667-2015

References

  1. Белоненко Т. В., Колдунов А. В. Стерические колебания уровня в северо-западной части Тихого океана // Вестник Санкт-Петербургского университета. Серия 7. Геология. География. — 2006. — № 3. — С. 81—88.
  2. Гидрометеорология и гидрохимия морей СССР. Том III Балтийское море. Выпуск I. Гидрометеорологические условия / под ред. Ф. С. Терзиев, В. А. Рожков, А. И. Смирнова. — Санкт-Петербург : Гидрометеоиздат, 1992. — С. 447.
  3. Гордеева С. М., Малинин В. Н., Дрозд М. В. Современная изменчивость уровня и водного баланса Балтийского моря // Морские берега - эволюция, экология, экономика. Материалы XXIV Международной береговой конференции, посвященной 60-летию со дня основания Рабочей группы «Морские берега»: в 2 томах. — Краснодар : Издательский дом Юг, 2012. — С. 88—91. — doi: 10.31519/conferencearticle_5b5ce38b9c90f6.81613295.
  4. Захарчук Е. А., Литина Е. Н., Клеванцов Ю. П. и др. Нестационарность гидрометеорологических процессов Балтийского моря в условиях меняющегося климата // Труды ГОИН. — 2017a. — № 218. — С. 6—62.
  5. Захарчук Е. А., Сухачев В. Н., Тихонова Н. А. Штормовые нагоны в Финском заливе Балтийского моря // Вестник Санкт-Петербургского университета. Науки о Земле. — 2021. — Т. 66, № 4. — С. 781—805. — doi: 10.21638/spbu07.2021.408.
  6. Захарчук Е. А., Сухачев В. Н., Тихонова Н. А. и др. Стационарное и нестационарное описание сезонной изменчивости уровня Балтийского моря по данным мареографических измерений // Морской гидрофизический журнал. — 2022. — Т. 38, № 6. — С. 655—678. — doi: 10.22449/0233-7584-2022-6-655-678.
  7. Захарчук Е. А., Сухачёв В. Н., Тихонова Н. А. Механизмы опасных подъёмов уровня моря в Финском заливе. — Санкт-Петербург : Издательство «Петербург XXI век», 2017b. — С. 152.
  8. Литина Е. Н., Захарчук Е. А., Тихонова Н. А. Динамика гипоксийных зон в Балтийском море на рубеже XX и XXI веков // Водные ресурсы. — 2020. — Т. 47, № 3. — С. 322—329. — doi: 10.31857/s0321059620030098.
  9. Малинин В. Н. Статистические методы анализа гидрометеорологической информации. Учебник. — СПб : РГГМУ, 2008. — С. 408.
  10. Малинин В. Н. Уровень океана: настоящее и будущее. — СПб : РГГМУ, 2012. — С. 260.
  11. Провоторов П. П. Стерические колебания уровня моря // Колебания уровня в морях. — СПб : РГГМУ, 2003. — С. 129—138.
  12. РД 52.27.759–2011. Руководящий документ. Наставление по службе прогнозов. Раздел 3. Часть III Служба морских гидрологических прогнозов. — Москва, 2011.
  13. Ablain M., Meyssignac B., Zawadzki L., et al. Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration // Earth System Science Data. — 2019. — Vol. 11, no. 3. — P. 1189–1202. — doi: 10.5194/essd-11-1189-2019.
  14. Cazenave A., Meyssignac B., Palanisamy H. Global Sea Level Budget Assessment by World Climate Research Programme. — 2018.
  15. Dee D. P., Uppala S. M., Simmons A. J., et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system // Quarterly Journal of the Royal Meteorological Society. — 2011. — Vol. 137, no. 656. — P. 553–597. — doi: 10.1002/qj.828.
  16. Durack P. J., Wijffels S. E., Gleckler P. J. Long-term sea-level change revisited: the role of salinity // Environmental Research Letters. — 2014. — Vol. 9, no. 11. — P. 114017. — doi: 10.1088/1748-9326/9/11/114017.
  17. European Union-Copernicus Marine Service. Baltic Sea Physics Reanalysis. — 2018. — doi: 10.48670/MOI-00013. — URL: https://data.marine.copernicus.eu/product/BALTICSEA_MULTIYEAR_PHY_003_011/description.
  18. Gill A. E., Niller P. P. The theory of the seasonal variability in the ocean // Deep Sea Research and Oceanographic Abstracts. — 1973. — Vol. 20, no. 2. — P. 141–177. — doi: 10.1016/0011-7471(73)90049-1.
  19. Greatbatch R. J. A note on the representation of steric sea level in models that conserve volume rather than mass // Journal of Geophysical Research. — 1994. — Vol. 99. — P. 12767. — doi: 10.1029/94jc00847.
  20. Hordoir R., Axell L., Löptien U., et al. Influence of sea level rise on the dynamics of salt inflows in the Baltic Sea // Journal of Geophysical Research: Oceans. — 2015. — Vol. 120, no. 10. — P. 6653–6668. — doi: 10.1002/2014jc010642.
  21. Hughes S. L., Holliday N. P., Gaillard F. Variability in the ICES/NAFO region between 1950 and 2009: observations from the ICES Report on Ocean Climate // ICES Journal of Marine Science. — 2012. — Vol. 69, no. 5. — P. 706–719. — doi: 10.1093/icesjms/fss044.
  22. Jackett D. R., Mcdougall T. J. Minimal Adjustment of Hydrographic Profiles to Achieve Static Stability // Journal of Atmospheric and Oceanic Technology. — 1995. — Vol. 12, no. 2. — P. 381–389. — doi: 10.1175/1520-0426(1995)0122.0.co;2.
  23. Köhl A., Stammer D., Cornuelle B. Interannual to Decadal Changes in the ECCO Global Synthesis // Journal of Physical Oceanography. — 2007. — Vol. 37, no. 2. — P. 313–337. — doi: 10.1175/jpo3014.1.
  24. Lehmann A., Myrberg K., Post P., et al. Salinity dynamics of the Baltic Sea // Earth System Dynamics. — 2022. — Vol. 13, no. 1. — P. 373–392. — doi: 10.5194/esd-13-373-2022.
  25. Leppäranta M., Myrberg K. Physical Oceanography of the Baltic Sea. — Springer Berlin Heidelberg, 2009. — P. 378. — doi: 10.1007/978-3-540-79703-6.
  26. Liblik T., Lips U. Stratification Has Strengthened in the Baltic Sea - An Analysis of 35 Years of Observational Data // Frontiers in Earth Science. — 2019. — Vol. 7. — doi: 10.3389/feart.2019.00174.
  27. Lisitzin E. The influence of water density variations on sea level in the Northern Baltic // The International Hydrographic Review. — 1959. — Vol. 36, no. 1. — P. 154–159.
  28. Lisitzin E. Sea-Level Changes. — Amsterdam : Elsevier Science & Technology Books, 1974. — P. 285.
  29. Marmefelt E., Omstedt A. Deep water properties in the Gulf of Bothnia // Continental Shelf Research. — 1993. — Vol. 13, no. 2/3. — P. 169–187. — doi: 10.1016/0278-4343(93)90104-6.
  30. Matthaus W. The history of investigation of salt water inflows into the Baltic Sea - from the early beginning to recent results // Marine Science Reports. — Rostock-Warnemuende, Germany : Baltic Sea Research Institute (IOW), 2006. — P. 73.
  31. Meier H. E. M. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea // Estuarine, Coastal and Shelf Science. — 2007. — Vol. 74, no. 4. — P. 610–627. — doi: 10.1016/j.ecss.2007.05.019.
  32. Menéndez M., Woodworth P. L. Changes in extreme high water levels based on a quasi-global tide-gauge data set // Journal of Geophysical Research: Oceans. — 2010. — Vol. 115, no. C10. — doi: 10.1029/2009jc005997.
  33. Nerger L., Hiller W., Schröter J. A comparison of error subspace Kalman filters // Tellus A: Dynamic Meteorology and Oceanography. — 2005. — Vol. 57, no. 5. — P. 715–735. — doi: 10.3402/tellusa.v57i5.14732.
  34. North Sea Region Climate Change Assessment / ed. by M. Quante, F. Colijn. — Springer International Publishing, 2016. — P. 573. — doi: 10.1007/978-3-319-39745-0.
  35. Oppenheimer M., Glavovic B. C., Hinkel J., et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities // The Ocean and Cryosphere in a Changing Climate. — Cambridge University Press, 2022. — P. 321–446. — doi: 10.1017/9781009157964.006.
  36. Passaro M., Müller F. L., Oelsmann J., et al. Absolute Baltic Sea Level Trends in the Satellite Altimetry Era: A Revisit // Frontiers in Marine Science. — 2021. — Vol. 8. — doi: 10.3389/fmars.2021.647607.
  37. Pemberton P., Löptien U., Hordoir R., et al. Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO–LIM3.6-based ocean–sea-ice model setup for the North Sea and Baltic Sea // Geoscientific Model Development. — 2017. — Vol. 10, no. 8. — P. 3105–3123. — doi: 10.5194/gmd-10-3105-2017.
  38. Placke M., Meier H. E. M., Gr¨awe U. и др. Long-Term Mean Circulation of the Baltic Sea as Represented by Various Ocean Circulation Models // Frontiers in Marine Science. — 2018. — Т. 5. — doi: 10.3389/fmars.2018.00287. — URL: https://www.frontiersin.org/articles/10.3389/fmars.2018.00287.
  39. Plag H.-P., Tsimplis M. N. Temporal variability of the seasonal sea-level cycle in the North Sea and Baltic Sea in relation to climate variability // Global and Planetary Change. — 1999. — Vol. 20, no. 2/3. — P. 173–203. — doi: 10.1016/s0921-8181(98)00069-1.
  40. Pugh D. Tides, Surges and Mean Sea Level: A Handbook for Engineers and Scientists. — John Wiley & Sons, Chichester, 1987. — 472 с.
  41. Schrum C., Hubner U., Jacob D., et al. A coupled atmosphere/ice/ocean model for the North Sea and the Baltic Sea // Climate Dynamics. — 2003. — Vol. 21, no. 2. — P. 131–151. — doi: 10.1007/s00382-003-0322-8.
  42. Stammer D., Cazenave A., Ponte R. M., et al. Causes for Contemporary Regional Sea Level Changes // Annual Review of Marine Science. — 2013. — Vol. 5, no. 1. — P. 21–46. — doi: 10.1146/annurev-marine-121211-172406.
  43. Storto A., Bonaduce A., Feng X., et al. Steric Sea Level Changes from Ocean Reanalyses at Global and Regional Scales // Water. — 2019. — Vol. 11, no. 10. — P. 1987. — doi: 10.3390/w11101987.
  44. Understanding sea-level rise and variability / ed. by J. A. Church, P. L. Woodworth, T. Aarup, et al. — Wiley, 2010. — P. 456. — doi: 10.1002/9781444323276.
  45. Vitousek S., Barnard P. L., Fletcher C. H., et al. Doubling of coastal flooding frequency within decades due to sea-level rise // Scientific Reports. — 2017. — Vol. 7, no. 1. — doi: 10.1038/s41598-017-01362-7.
  46. Voinov G. N. Tides and Tidal streams // Polar Seas Oceanography. An integrated case study of the Kara Sea / ed. by V. A. Volkov, O. M. Johannessen, V. E. Borodachov, et al. — Chichester, UK: Praxis Publishing, 2002. — P. 147–214.
  47. WCRP Global Sea Level Budget Group. Global sea-level budget 1993-present // Earth System Science Data. — 2018. — Vol. 10, no. 3. — P. 1551–1590. — doi: 10.5194/essd-10-1551-2018.
  48. Weisse R., Dailidien˙e I., Hünicke B., et al. Sea level dynamics and coastal erosion in the Baltic Sea region // Earth System Dynamics. — 2021. — Vol. 12, no. 3. — P. 871–898. — doi: 10.5194/esd-12-871-2021.
  49. Zakharchuk E. A., Sukhachev V. N., Tikhonova N. A., et al. Seasonal fluctuations in Baltic sea level determined from satellite altimetry // Continental Shelf Research. — 2022. — Vol. 249. — P. 104863. — doi: 10.1016/j.csr.2022.104863.

Copyright (c) 2023 Захарчук Е.A., Сухачев В.N., Тихонова Н.A., Литина Е.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies