ANALYTICAL MODEL OF SMALL FLUCTUATIONS OF COMPRESSIBLE MAGMA WITH MAXWELL RHEOLOGY IN THE FEEDING SYSTEM OF A VOLCANO. PART 1. DENSITY OSCILLATION

Cover Page

Cite item

Full Text

Abstract

The analytical mathematical model is presented that describes one of the possible mechanisms for the occurrence of long-period seismic events that are often recorded near active volcanic centers. The feeding system of the volcano is modeled in the simplest form of a cylindrical channel filled with a compressible magmatic melt with the rheology of a Maxwell body. It is shown that such a magmatic body can experience harmonic damped oscillations, the damping coefficient of which is determined by the relaxation time of the magmatic melt. These fluctuations may appear as a response to a density perturbation caused by the influx of denser magma from deep layers or a change in pressure in the supply system of the volcano. The dependence of the natural oscillatory frequency on the physical characteristics of the magmatic melt and the geometric dimensions of the feed channel is shown. When the compressibility of the magmatic melt is taken into account, density perturbations depend on the size of the feeding system and are characterized by periodic oscillations, which are most pronounced near the channel axis. Oscillations are also experienced by the flow velocity component directed along the radius of the cylinder. The source mechanism of the long-period seismic events is discussed. The model is used to describe long-period oscillations recorded near Santiaguito (Guatemala).

About the authors

Anatoly Anatol'evich Radionoff

Southern Mathematical Institute – the Affiliate of Vladikavkaz Scientific Center of Russian Academy of Sciences

Email: aar200772@mail.ru
ORCID iD: 0000-0002-6934-6873
Scopus Author ID: 8139101100
ResearcherId: S-1229-2016
department of mathematical modeling, candidate of technical sciences 2006-2022

References

  1. Анфилогов В. Н., Быков В. Н., Осипов А. А. Силикатные расплавы. - Москва : Наука, 2005. - С. 357
  2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: учебное пособие. Гидродинамика. Т. 6. - Москва : Наука. Физматлит, 1988. - С. 736
  3. Лебедев Е. Б., Хитаров Н. И. Физические свойства магматических расплавов. - Москва : Наука, 1979. - С. 200.
  4. Персиков Э. С. Вязкость магматических расплавов. - Москва : Наука, 1984. - С. 159
  5. Радионов А. А. О малых колебаниях магмы в питающей системе вулкана // Известия вузов. Северо-Кавказский регион. Естественные науки. - 2020. - 1 (205). - С. 78-84. - doi: 10.18522/1026-2237-2020-1-78-84
  6. Тихонов А. Н., Самарский А. А. Уравнения математической физики. - Москва : Наука, 1966. - С. 724
  7. Шакирова А. А., Фирстов П. П., Паровик Р. И. Феноменологическая модель генерации землетрясений сейсмического режима ”Drumbeats”, сопровождавших извержение вулкана Кизимен в 2011-2012 гг. // Вестник КРАУНЦ. Физикоматематические науки. - 2020. - Т. 33, № 4. - С. 86-101. - doi: 10.26117/2079-6641-2020-33-4-86-101
  8. Angelis S. D., McNutt S. R. Degassing and hydrothermal activity at Mt. Spurr, Alaska during the summer of 2004 inferred from the complex frequencies of long-period events // Geophysical Research Letters. - 2005. - Vol. 32, no. 12. - P. 1-4. - doi: 10.1029/2005gl022618
  9. Bird R. B., Armstrong R. C., Hassager O. Dynamics of Polymeric Liquids. Vol. 1. - New York : Wiley-Interscience, 1987. - P. 672
  10. Chouet B. A. Long-period volcano seismicity: its source and use in eruption forecasting // Nature. - 1996. - Vol. 380, no. 6572. - P. 309- 316. - doi: 10.1038/380309a0
  11. Crosson R. S., Bame D. A. A spherical source model for low frequency volcanic earthquakes // Journal of Geophysical Research. - 1985. - Vol. 90, B12. - P. 10237. - doi: 10.1029/jb090ib12p10237
  12. Dingwell D. B., Webb S. L. Relaxation in silicate melts // European Journal of Mineralogy. - 1990. - Vol. 2, no. 4. - P. 427-449
  13. Fujita E., Ida Y., Oikawa J. Eigen oscillation of a fluid sphere and source mechanism of harmonic volcanic tremor // Journal of Volcanology and Geothermal Research. - 1995. - Vol. 69, no. 3/4. - P. 365-378. - doi: 10.1016/0377-0273(95)00027-5
  14. Gonnermann H. M., Manga M. The Fluid Mechanics Inside a Volcano // Annual Review of Fluid Mechanics. - 2007. - Vol. 39, no. 1. - P. 321- 356. - doi: 10.1146/annurev.fluid.39.050905.110207
  15. Iverson R. M., Dzurisin D., Gardner C. A., et al. Dynamics of seismogenic volcanic extrusion at Mount St Helens in 2004-2005 // Nature. - 2006. - Vol. 444, no. 7118. - P. 439-443. - doi: 10.1038/nature05322
  16. Johnson J. B., Lees J. M., Gerst A., et al. Longperiod earthquakes and co-eruptive dome inflation seen with particle image velocimetry // Nature. - 2008. - Vol. 456, no. 7220. - P. 377- 381. - doi: 10.1038/nature07429
  17. Johnson J. B., Lyons J. J., Andrews B. J., et al. Explosive dome eruptions modulated by periodic gas-driven inflation // Geophysical Research Letters. - 2014. - Vol. 41, no. 19. - P. 6689-6697. - doi: 10.1002/2014gl061310
  18. Koulakov I., Smirnov S. Z., Gladkov V., et al. Causes of volcanic unrest at Mt. Spurr in 2004-2005 inferred from repeated tomography // Scientific Reports. - 2018. - Vol. 8, no. 1. - doi: 10.1038/s41598-018-35453-w
  19. Koulakov I., West M., Izbekov P. Fluid ascent during the 2004-2005 unrest at Mt. Spurr inferred from seismic tomography // Geophysical Research Letters. - 2013. - Vol. 40, no. 17. - P. 4579-4582. - doi: 10.1002/grl.50674
  20. Kumagai H., Chouet B. A. The complex frequencies of long-period seismic events as probes of fluid composition beneath volcanoes // Geophysical Journal International. - 1999. - Vol. 138, no. 2. - F7-F12. - doi: 10.1046/j.1365-246x.1999.00911.x
  21. Kumagai H., Chouet B. A. The dependence of acoustic properties of a crack on the resonance mode and geometry // Geophysical Research Letters. - 2001. - Vol. 28, no. 17. - P. 3325-3328. - doi: 10.1029/2001gl013025
  22. Kurzon I., Lyakhovsky V., Lensky N. G., et al. Forcing of seismic waves travelling through a bubbly magma // AGU Fall Meeting Abstracts. Vol. 2005. - New York, 2005. - V53A-1535
  23. Kurzon I., Lyakhovsky V., Navon O., et al. Pressure waves in a supersaturated bubbly magma // Geophysical Journal International. - 2011. - Vol. 187, no. 1. - P. 421-438. - doi: 10.1111/j.1365-246x.2011.05152.x
  24. Lamb O. D., Lamur A., Díaz-Moreno A., et al. Disruption of Long-Term Effusive-Explosive Activity at Santiaguito, Guatemala // Frontiers in Earth Science. - 2019. - Vol. 6. - P. 1-14. - doi: 10.3389/feart.2018.00253
  25. Lavallée Y., Dingwell D. B., Johnson J. B., et al. Thermal vesiculation during volcanic eruptions // Nature. - 2015. - Vol. 528, no. 7583. - P. 544- 547. - doi: 10.1038/nature16153
  26. McNutt S. R. Volcanic seismology // Annual Review of Earth and Planetary Sciences. - 2005. - Vol. 33, no. 1. - P. 461-491. - doi: 10.1146/annurev.earth.33.092203.122459
  27. Neuberg J. W., Tuffen H., Collier L., et al. The trigger mechanism of low-frequency earthquakes on Montserrat // Journal of Volcanology and Geothermal Research. - 2006. - Vol. 153, no. 1/2. - P. 37-50. - doi: 10.1016/j.jvolgeores.2005.08.008
  28. Nishimura T., Hamaguchi H., Ueki S. Source mechanisms of volcanic tremor and low-frequency earthquakes associated with the 1988-1989 eruptive activity of Mt Tokachi, Hokkaido, Japan // Geophysical Journal International. - 1995. - Vol. 121, no. 2. - P. 444-458. - doi: 10.1111/j.1365-246x.1995.tb05725.x
  29. Ohmi S., Obara K. Deep low-frequency earthquakes beneath the focal region of the Mw 6.7 2000 Western Tottori earthquake // Geophysical Research Letters. - 2002. - Vol. 29, no. 16. - P. 1-4. - doi: 10.1029/2001gl014469
  30. Ozerov A., Ispolatov I., Lees J. Modeling Strombolian eruptions of Karymsky volcano, Kamchatka, Russia // Journal of Volcanology and Geothermal Research. - 2003. - Vol. 122, no. 3/4. - P. 265-280. - doi: 10.1016/s0377-0273(02)00506-1
  31. Parovik R. I., Shakirova A. A., Firstov P. P. Mathematical model of the stick-slip effect for describing the “drumbeat” seismic regime during the eruption of the Kizimen volcano in Kamchatka // Proceedings of the II International Conference on Advances in Materials, Systems and Technologies. (CAMSTech-II 2021). Vol. 2467. - AIP Publishing, 2022. - P. 080015. - doi: 10.1063/5.0092351
  32. Scharff L., Hort M., Gerst A. The dynamics of the dome at Santiaguito volcano, Guatemala // Geophysical Journal International. - 2014. - Vol. 197, no. 2. - P. 926-942. - doi: 10.1093/gji/ggu069
  33. Webb S. Silicate melts: Relaxation, rheology, and the glass transition // Reviews of Geophysics. - 1997. - Vol. 35, no. 2. - P. 191-218. - doi: 10.1029/96rg03263

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Радионов А.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.