Prediction of blood-brain barrier permeability of organic compounds


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using fragmental descriptors and artificial neural networks, a predictive model of the relationship between the structure of organic compounds and their blood-brain barrier permeability was constructed and the structural factors affecting the readiness of this penetration were analyzed. This model (N = 529, Q2 = 0.82, RMSEcv = 0.32) surpasses the previously published models in terms of the prediction accuracy and the applicability domain and can be used for the optimization of the pharmacokinetic parameters during drug development.

Sobre autores

A. Dyabina

Department of Chemistry

Email: genie@qsar.chem.msu.ru
Rússia, Moscow, 119991

E. Radchenko

Department of Chemistry; Institute of Physiologically Active Compounds

Autor responsável pela correspondência
Email: genie@qsar.chem.msu.ru
Rússia, Moscow, 119991; Severnyi proezd 1, Chernogolovka, Moscow oblast, 142432

V. Palyulin

Department of Chemistry; Institute of Physiologically Active Compounds

Email: genie@qsar.chem.msu.ru
Rússia, Moscow, 119991; Severnyi proezd 1, Chernogolovka, Moscow oblast, 142432

N. Zefirov

Department of Chemistry; Institute of Physiologically Active Compounds

Email: genie@qsar.chem.msu.ru
Rússia, Moscow, 119991; Severnyi proezd 1, Chernogolovka, Moscow oblast, 142432

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016