On the arithmetic of modified idèle class groups

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let $k$ be a number field and $S$, $T$ sets of places of $k$. For each prime $p$, we define an invariant $\mathscr{G}=\mathscr{G}_p(k_\infty/k,S,T)$ related to the Galois group of the maximal abelian extension of $k$ which is unramified outside $S$ and splits completely in $T$. In the main theorem we interpret $\mathscr{G}$ in terms of another arithmetic object $\mathscr{U}$ that involves various unit groups and uses genus theory applied to certain modules,which are technically modified from idèle groups. We show that this interpretation is functorial with respect to $S$ and $T$ and thereby providesinteresting connections between $\mathscr{G}$ and $\mathscr{U}$ as $S$ and $T$ vary. The settings and methods are new, and different from the classical genus theoreticmethods for idèle groups. The advantage of the new methods at the finite level not only generalizes but also strengthens certain known results involving the maximal $p$-abelian profinite Galois groupof $k$ that is $S$-ramified and $T$-split in terms of the arithmetic of certain units of $k$. At the infinite level, the method relates the deep arithmeticof special units with those of profinite Galois groups. For example, for special cases of $S$ and $T$, the invariants $\mathscr{G}$ are related to the conjectures of Gross (or Kuz'min–Gross) and Leopoldtand accordingly, in these special cases, the functorial interpretation of $\mathscr{G}$ as $S$ and $T$ vary involves interestingconnections between the conjectures of Gross and Leopoldt in a simpler and more concrete way. As a result, we conjecture that $\mathscr{G}$ is finite for all finite disjoint sets$S$, $T$ over the cyclotomic $\mathbb{Z}_p$-tower of $k$, which includes the conjectures of Gross and Leopoldt as special cases.

作者简介

Wan Lee

Yonsei University

Email: wannim@yonsei.ac.kr

Soogil Seo

Yonsei University

PhD, Professor

参考

  1. C. D. Gonzalez-Aviles, “Capitulation, ambiguous classes and the cohomology of units”, J. Reine Angew. Math., 2007:613 (2007), 75–97
  2. G. Gras, “Groupe de Galois de la $p$-extension abelienne $p$-ramifiee maximale d'un corps de nombres”, J. Reine Angew. Math., 1982:333 (1982), 86–132
  3. G. Gras, Class field theory. From theory to practice, Springer Monogr. Math., Springer-Verlag, Berlin, 2003, xiv+491 pp.
  4. Л. В. Кузьмин, “Модуль Тэйта полей алгебраических чисел”, Изв. АН СССР. Сер. матем., 36:2 (1972), 267–327
  5. B. Gross, “$p$-adic $L$-series at $s = 0$”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28:3 (1981), 979–994
  6. K. Iwasawa, “On cohomology groups of units for $mathbf Z_p$-extensions”, Amer. J. Math., 105:1 (1983), 189–200
  7. Л. В. Кузьмин, “О формулах для числа классов вещественных абелевых полей”, Изв. РАН. Сер. матем., 60:4 (1996), 43–110
  8. J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of number fields, Grundlehren Math. Wiss., 323, 2nd ed., Springer-Verlag, Berlin, 2008, xvi+825 pp.
  9. Н. Бурбаки, Общая топология. Основные структуры, Элементы математики, Наука, М., 1968, 272 с.
  10. J.-F. Jaulent, L'arithmetique des $ell$-extensions, Thèse de doctorat d'etat en mathematiques, Publ. Math. Fac. Sci. Besançon, Theorie des nombres. Fasc. 1. 1984–1986, Univ. Franche-Comte, Besançon, 1986, viii+349 pp.
  11. J.-F. Jaulent, “Theorie $ell$-adique globale du corps de classes”, J. Theor. Nombres Bordeaux, 10:2 (1998), 355–397
  12. Thong Nguyen-Quang-Do, “Sur la $mathbb{Z}_p$-torsion de certains modules galoisiens”, Ann. Inst. Fourier (Grenoble), 36:2 (1986), 27–46
  13. M. Karoubi, T. Lambre, “Sur la $K$-theorie du foncteur norme”, J. Algebra, 321:10 (2009), 2754–2781
  14. K. Iwasawa, “On $mathbf Z_{l}$-extensions of algebraic number fields”, Ann. of Math. (2), 98:2 (1973), 246–326
  15. A. Brumer, “On the units of algebraic number fields”, Mathematika, 14:2 (1967), 121–124
  16. R. Greenberg, “On the structure of certain Galois groups”, Invent. Math., 47:1 (1978), 85–99
  17. S. Seo, On the universal norm elements of a number field, preprint, Yonsei University, Seoul, 2020
  18. Н. Бурбаки, Коммутативная алгебра, Элементы математики, M., Мир, 1971, 708 с.
  19. M. Kolster, “An idelic approach to the wild kernel”, Invent. Math., 103:1 (1991), 9–24
  20. J.-F. Jaulent, “Classes logarithmiques des corps de nombres”, J. Theor. Nombres Bordeaux, 6:2 (1994), 301–325
  21. J.-F. Jaulent, “Classes logarithmiques des corps totalement reels”, Acta Arith., 103:1 (2002), 1–7
  22. S. Seo, “On the conjectures of Gross and Leopoldt”, Math. Res. Lett., 22:5 (2015), 1509–1540
  23. P. Schneider, “Über gewisse Galoiskohomologiegruppen”, Math. Z., 168:2 (1979), 181–205

版权所有 © Lee W., Seo S., 2020

##common.cookie##