Asymptotic bounds for spherical codes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The set of all error-correcting codes $C$ over a fixed finite alphabet$\mathbf{F}$ of cardinality $q$ determines the set of code points in the unit square $[0,1]^2$ with coordinates $(R(C), \delta (C))$:= (relative transmission rate, relative minimal distance). The central problemof the theory of such codes consists in maximising simultaneously the transmission rate of the code and the relative minimum Hamming distance between two different code words. The classical approach to this problem explored in vast literature consists in inventing explicit constructions of “good codes” and comparing new classes of codes with earlier ones.A less classical approach studies the geometry of the whole set of code points $(R,\delta)$ (with $q$ fixed), at first independently of its computability properties, and only afterwards turningto problems of computability, analogies with statistical physics, and so on.The main purpose of this article consists in extending this latter strategy to the domain of spherical codes.

作者简介

Yuri Manin

Max Planck Institute for Mathematics

Doctor of physico-mathematical sciences

Matilde Marcolli

California Institute of Technology, Department of Mathematics

Email: matilde@caltech.edu

参考

  1. С. Г. Влэдуц, Д. Ю. Ногин, М. А. Цфасман, Алгеброгеометрические коды. Основные понятия, МЦНМО, М., 2003, 504 с.
  2. Yu. I. Manin, M. Marcolli, “Error-correcting codes and phase transitions”, Math. Comput. Sci., 5:2 (2011), 133–170
  3. Yu. I. Manin, “A computability challenge: asymptotic bounds for error-correcting codes”, Computation, physics and beyond, Lecture Notes in Comput. Sci., 7160, Springer, Heidelberg, 2012, 174–182
  4. Г. А. Кабатянский, В. И. Левенштейн, “О границах для упаковок на сфере и в пространстве”, Пробл. передачи информ., 14:1 (1978), 3–25
  5. Дж. Конвей, Н. Слоэн, Упаковки шаров, решетки и группы, т. 1, 2, Мир, М., 1990, 792 с.
  6. H. Cohn, A. Kumar, S. D. Miller, D. Radchenko, M. Viazovska, “The sphere packing problem in dimension 24”, Ann. of Math. (2), 185:3 (2017), 1017–1033
  7. M. S. Viazovska, “The sphere packing problem in dimension $8$”, Ann. of Math. (2), 185:3 (2017), 991–1015
  8. H. Cohn, N. Elkies, “New upper bounds on sphere packings. I”, Ann. of Math. (2), 157:2 (2003), 689–714
  9. Yu. I. Manin, M. Marcolli, “Kolmogorov complexity and the asymptotic bound for error-correcting codes”, J. Differential Geom., 97:1 (2014), 91–108
  10. R. A. Rankin, “The closest packing of spherical caps in $n$ dimensions”, Proc. Glasgow Math. Assoc., 2:3 (1955), 139–144
  11. Yu. I. Manin, “What is the maximum number of points on a curve over $mathbf{F}_2$?”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28:3 (1981), 715–720
  12. H. Cohn, Yang Jiao, A. Kumar, S. Torquato, “Rigidity of spherical codes”, Geom. Topol., 15:4 (2011), 2235–2273
  13. H. Cohn, Yufei Zhao, “Sphere packing bounds via spherical codes”, Duke Math. J., 163:10 (2014), 1965–2002
  14. J. Hamkins, K. Zeger, “Asymptotically dense spherical codes. I. Wrapped spherical codes”, IEEE Trans. Inform. Theory, 43:6 (1997), 1774–1785

版权所有 © Manin Y.I., Marcolli M., 2019

##common.cookie##