Inverse problems for evolutionary quasi-variational hemivariational inequalities with application to mixed boundary value problems

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The aim of this paper is to examine an inverse problem of parameter identification in an evolutionary quasi-variational hemivariational inequality in infinite dimensional reflexive Banach spaces. First, the solvability and compactness of the solution set to the inequality are established by employing a fixed point argument and tools of non-linear analysis. Then, general existence and compactness results for the inverse problem have been proved. Finally, we illustrate the applicability of the results in the study of an identification problem for an initial-boundary value problem of parabolic type with mixed multivalued and non-monotone boundary conditions and a state constraint.

Об авторах

Zijia Peng

Guangxi Minzu University

Email: pengzijia@126.com

Guangkun Yang

Guangxi Minzu University

Email: GkunYang0703@163.com

Zhenhai Liu

Yulin Normal University

Автор, ответственный за переписку.
Email: zhhliu@hotmail.com

доктор наук, профессор

Stanisław Migórski

Beibu Gulf University; Jagiellonian University

Email: stanislaw.migorski@uj.edu.pl
доктор наук, профессор

Список литературы

  1. Y. Achdou, “An inverse problem for a parabolic variational inequality arising in volatility calibration with American options”, SIAM J. Control Optim., 43:5 (2005), 1583–1615
  2. A. Barbagallo, “Existence of continuous solutions to evolutionary quasi-variational inequalities with applications”, Matematiche (Catania), 62:2 (2007), 11–27
  3. A. Barbagallo, “Regularity results for evolutionary nonlinear variational and quasi-variational inequalities with applications to dynamic equilibrium problems”, J. Global Optim., 40:1-3 (2008), 29–39
  4. V. Barbu, T. Precupanu, Convexity and optimization in Banach spaces, Springer Monogr. Math., 4th ed., Springer, Dordrecht, 2012, xii+368 pp.
  5. K. Bartosz, Xiaoliang Cheng, P. Kalita, Yuanjie Yu, Cong Zeng, “Rothe method for parabolic variational-hemivariational inequalities”, J. Math. Anal. Appl., 423:2 (2015), 841–862
  6. H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011, xiv+599 pp.
  7. F. E. Browder, P. Hess, “Nonlinear mappings of monotone type in Banach spaces”, J. Funct. Anal., 11:3 (1972), 251–294
  8. S. Carl, Vy Khoi Le , D. Motreanu, Nonsmooth variational problems and their inequalities. Comparison principles and applications, Springer Monogr. Math., Springer, New York, 2007, xii+395 pp.
  9. S. Carl, Vy K. Le, D. Motreanu, “Evolutionary variational-hemivariational inequalities: existence and comparison results”, J. Math. Anal. Appl., 345:1 (2008), 545–558
  10. Zui-Cha Deng, Liu Yang, Jian-Ning Yu, Guan-Wei Luo, “An inverse problem of identifying the coefficient in a nonlinear parabolic equation”, Nonlinear Anal., 71:12 (2009), 6212–6221
  11. Z. Denkowski, S. Migorski, N. S. Papageorgiou, An introduction to nonlinear analysis: applications, Kluwer Acad. Publ., Boston, MA, 2003, xii+823 pp.
  12. L. Gasinski, S. Migorski, A. Ochal, “Existence results for evolutionary inclusions and variational-hemivariational inequalities”, Appl. Anal., 94:8 (2015), 1670–1694
  13. J. Gwinner, “An optimization approach to parameter identification in variational inequalities of second kind”, Optim. Lett., 12:5 (2018), 1141–1154
  14. Weimin Han, M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, AMS/IP Stud. Adv. Math., 30, Amer. Math. Soc., Providence, RI; Int. Press, Somerville, MA, 2002, xviii+442 pp.
  15. A. Hasanov, Zhenhai Liu, “An inverse coefficient problem for a nonlinear parabolic variational inequality”, Appl. Math. Lett., 21:6 (2008), 563–570
  16. P. Kalita, “Convergence of Rothe scheme for hemivariational inequalities of parabolic type”, Int. J. Numer. Anal. Model., 10:2 (2013), 445–465
  17. A. A. Khan, S. Migorski, M. Sama, “Inverse problems for multi-valued quasi variational inequalities and noncoercive variational inequalities with noisy data”, Optimization, 68:10 (2019), 1897–1931
  18. A. A. Khan, D. Motreanu, “Existence theorems for elliptic and evolutionary variational and quasi-variational inequalities”, J. Optim. Theory Appl., 167:3 (2015), 1136–1161
  19. A. A. Khan, D. Motreanu, “Inverse problems for quasi-variational inequalities”, J. Global Optim., 70:2 (2018), 401–411
  20. R. Kluge, “On some parameter determination problems and quasi-variational inequalities”, Theory of nonlinear operators, Proc. 5th Internat. Summer School (Central Inst. Math. Mech. Acad. Sci. GDR, Berlin, 1977), Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 6, Akademie-Verlag, Berlin, 1978, 129–139
  21. Xiuwen Li, Zhenhai Liu, N. S. Papageorgiou, “Solvability and pullback attractor for a class of differential hemivariational inequalities with its applications”, Nonlinearity, 36:2 (2023), 1323–1348
  22. Yongjian Liu, Zhenhai Liu, N. S. Papageorgiou, “Sensitivity analysis of optimal control problems driven by dynamic history-dependent variational- hemivariational inequalities”, J. Differential Equations, 342 (2023), 559–595
  23. Zhenhai Liu, “Generalized quasi-variational hemivariational inequalities”, Appl. Math. Lett., 17:6 (2004), 741–745
  24. Zhenhai Liu, N. S. Papageorgiou, “Double phase Dirichlet problems with unilateral constraints”, J. Differential Equations, 316:15 (2022), 249–269
  25. Zhenhai Liu, N. S. Papageorgiou, “Nonautonomous $(p,q)$-equations with unbalanced growth and competing nonlinearities”, J. Math. Pures Appl. (9), 182 (2024), 164–194
  26. V. Maksimov, “Inverse problems for variational inequalities”, Optimization, optimal control and partial differential equations (Iaşi, 1992), Internat. Ser. Numer. Math., 107, Birkhäuser Verlag, Basel, 1992, 275–286
  27. S. Migorski, S. Dudek, “A new class of variational-hemivariational inequalities for steady Oseen flow with unilateral and frictional type boundary conditions”, ZAMM Z. Angew. Math. Mech., 100:2 (2020), e201900112, 23 pp.
  28. S. Migorski, A. A. Khan, Shengda Zeng, “Inverse problems for nonlinear quasi-variational inequalities with an application to implicit obstacle problems of $p$-Laplacian type”, Inverse Problems, 35:3 (2019), 035004, 14 pp.
  29. S. Migorski, A. A. Khan, Shengda Zeng, “Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems”, Inverse Problems, 36:2 (2020), 024006, 20 pp.
  30. S. Migorski, A. Ochal, “Boundary hemivariational inequality of parabolic type”, Nonlinear Anal., 57:4 (2004), 579–596
  31. S. Migorski, A. Ochal, “Navier–Stokes problems modeled by evolution hemivariational inequalities”, Discrete Contin. Dyn. Syst., 2007, Dynamical systems and differential equations. Proc. 6th AIMS Internat. Conf., 731–740
  32. S. Migorski, A. Ochal, “An inverse coefficient problem for a parabolic hemivariational inequality”, Appl. Anal., 89:2 (2010), 243–256
  33. S. Migorski, A. Ochal, M. Sofonea, Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems, Adv. Mech. Math., 26, Springer, New York, 2013, xvi+285 pp.
  34. S. Migorski, Van Thien Nguyen, Shengda Zeng, “Solvability of parabolic variational-hemivariational inequalities involving space-fractional Laplacian”, Appl. Math. Comput., 364 (2020), 124668, 9 pp.
  35. F. Miranda, J. F. Rodrigues, L. Santos, “Evolutionary quasi-variational and variational inequalities with constraints on the derivatives”, Adv. Nonlinear Anal., 9:1 (2020), 250–277
  36. Z. Naniewicz, P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications, Monogr. Textbooks Pure Appl. Math., 188, Marcel Dekker, Inc., New York, 1995, xviii+267 pp.
  37. П. Панагиотопулос, Неравенства в механике и их приложения. Выпуклые и невыпуклые функции энергии, Мир, М., 1989, 494 с.
  38. Zijia Peng, “Existence of a class of variational inequalities modelling quasi-static viscoelastic contact problems”, ZAMM Z. Angew. Math. Mech., 99:5 (2019), e201800172, 20 pp.
  39. Zijia Peng, “Optimal obstacle control problems involving nonsmooth cost functionals and quasilinear variational inequalities”, SIAM J. Control Optim., 58:4 (2020), 2236–2255
  40. Zijia Peng, K. Kunisch, “Optimal control of elliptic variational-hemivariational inequalities”, J. Optim. Theory Appl., 178:1 (2018), 1–25
  41. Zijia Peng, Zhonghui Liu, “Inverse problems for nonlinear quasi-variational hemivariational inequalities with application to obstacle problems of elliptic type”, Commun. Nonlinear Sci. Numer. Simul., 101 (2021), 105889, 14 pp.
  42. Zijia Peng, Cuiming Ma, Zhonghui Liu, “Existence for a quasistatic variational-hemivariational inequality”, Evol. Equ. Control Theory, 9:4 (2020), 1153–1165
  43. M. Sofonea, A. Matei, Mathematical models in contact mechanics, London Math. Soc. Lecture Note Ser., 398, Cambridge Univ. Press, Cambridge, 2012, xiv+280 pp.
  44. M. Sofonea, S. Migorski, Variational-hemivariational inequalities with applications, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2018, xv+311 pp.
  45. Yi-bin Xiao, Nan-jing Huang, “Sub-super-solution method for a class of higher order evolution hemivariational inequalities”, Nonlinear Anal., 71:1-2 (2009), 558–570
  46. E. Zeidler, Nonlinear functional analysis and its applications, v. II/A, Linear monotone operators, Springer-Verlag, New York, 1990, xviii+467 pp.
  47. Biao Zeng, S. Migorski, “Variational-hemivariational inverse problems for unilateral frictional contact”, Appl. Anal., 99:2 (2020), 293–312
  48. Shengda Zeng, D. Motreanu, A. A. Khan, “Evolutionary quasi-variational-hemivariational inequalities I: Existence and optimal control”, J. Optim. Theory Appl., 193:1-3 (2022), 950–970

© Peng Z., Yang G., Liu Z., Migórski S., 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах