О расширенной форме гипотезы Гротендика–Серра

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Пусть $R$ – регулярная полулокальная область целостности, содержащая поле, и $K$ – ее поле частных. Пусть $\mu\colon \mathbf{G} \to \mathbf{T}$ – это морфизм групповых $R$-схем между редуктивными групповыми $R$-схемами, который является гладким как морфизм схем. Предположим, что $\mathbf{T}$ – это $R$-тор. Тогда отображение $\mathbf{T}(R)/ \mu(\mathbf{G}(R)) \to \mathbf{T}(K)/ \mu(\mathbf{G}(K))$ является инъективным и выполнена некоторая теорема чистоты. Эти и другие результаты выводятся из расширенной формы гипотезы Гротендика–Серра, доказанной в настоящей статье для вышеуказанных колец $R$.Библиография: 22 наименования.

Об авторах

Иван Александрович Панин

Санкт-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук

Email: paniniv@gmail.com
доктор физико-математических наук

Список литературы

  1. Schemas en groupes, Seminaire de geometrie algebrique du Bois Marie 1962/64 (SGA 3), dirige par M. Demazure, A. Grothendieck, v. III, Lecture Notes in Math., 153, Structure des schemas en groupes reductifs, Rev. reprint, Springer-Verlag, Berlin–New York, 1970, viii+529 pp.
  2. И. А. Панин, “Две теоремы чистоты и гипотеза Гротендика–Серра о главных $mathbf G$-расслоениях”, Матем. сб., 211:12 (2020), 123–142
  3. И. А. Панин, “Доказательство гипотезы Гротендика–Серра о главных расслоениях над регулярным локальным кольцом, содержащим поле”, Изв. РАН. Сер. матем., 84:4 (2020), 169–186
  4. R. Fedorov, I. Panin, “A proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields”, Publ. Math. Inst. Hautes Etudes Sci., 122 (2015), 169–193
  5. A. Grothendieck, “Technique de descente et theorèmes d'existence en geometrie algebrique. I. Generalites. Descente par morphismes fidèlement plats”, Seminaire Bourbaki, Annees 1958/59–1959/60. Exposes 169–204, v. 5, Reprint of the 1966 ed., Soc. Math. France, Paris, 1995, Exp. No. 190, 299–327
  6. A. Grothendieck, “Torsion homologique et sections rationnelles”, Seminaire C. Chevalley, 2e annee, v. 3, Anneaux de Chow et applications, Secretariat mathematique, Paris, 1958, Exp. No. 5, 29 pp.
  7. J.-P. Serre, “Espaces fibres algebriques”, Seminaire C. Chevalley, 2e annee, v. 3, Anneaux de Chow et applications, Secretariat mathematique, Paris, 1958, Exp. No. 1, 37 pp.
  8. J.-L. Colliot-Thelène, M. Ojanguren, “Espaces principaux homogènes localement triviaux”, Inst. Hautes Etudes Sci. Publ. Math., 75 (1992), 97–122
  9. J.-L. Colliot-Thelène, J.-J. Sansuc, “Principal homogeneous spaces under flasque tori: applications”, J. Algebra, 106:1 (1987), 148–205
  10. I. Panin, “Nice triples and the Grothendieck–Serre conjecture concerning principal $mathrm G$-bundles over reductive group schemes”, Duke Math. J., 168:2 (2019), 351–375
  11. I. Panin, “On Grothendieck–Serre conjecture concerning principal bundles”, Proceedings of the international congress of mathematicians (ICM 2018) (Rio de Janeiro, 2018), v. II, Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, 201–221
  12. Ye. A. Nisnevich, “Espaces homogènes principaux rationnellement triviaux et arithmetique des schemas en groupes reductifs sur les anneaux de Dedekind”, C. R. Acad. Sci. Paris Ser. I Math., 299:1 (1984), 5–8
  13. I. A. Panin, A. K. Stavrova, “On the Grothendieck–Serre conjecture concerning principal $G$-bundles over semilocal Dedekind domains”, Вопросы теории представлений алгебр и групп. 29, Зап. науч. сем. ПОМИ, 443, ПОМИ, СПб., 2016, 133–146
  14. Ning Guo, “The Grothendieck–Serre conjecture over semilocal Dedekind rings”, Transform. Groups, 2020, 1–21, Publ. online
  15. V. Chernousov, P. Gille, A. Pianzola, “A classification of torsors over Laurent polynomial rings”, Comment. Math. Helv., 92:1 (2017), 37–55
  16. I. A. Panin, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: II”, Изв. РАН. Сер. матем., 80:4 (2016), 131–162
  17. A. Suslin, V. Voevodsky, “Singular homology of abstract algebraic varieties”, Invent. Math., 123:1 (1996), 61–94
  18. I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: I”, Compos. Math., 151:3 (2015), 535–567
  19. И. А. Панин, “Совершенные тройки и гомотопии отображений мотивных пространств”, Изв. РАН. Сер. матем., 83:4 (2019), 158–193
  20. D. Popescu, “General Neron desingularization and approximation”, Nagoya Math. J., 104 (1986), 85–115
  21. R. G. Swan, “Neron–Popescu desingularization”, Algebra and geometry (Taipei, 1995), Lect. Algebra Geom., 2, Int. Press, Cambridge, MA, 1998, 135–192

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Панин И.А., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).