Stably rational surfaces over a quasi-finite field

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let $k$ be a field and $X$ a smooth, projective,stably $k$-rational surface. If $X$ is split by a cyclic extension(for example, if the field $k$ is finite or, more generally, quasi-finite),then the surface $X$ is $k$-rational.

Sobre autores

Jean-Louis Colliot-Thélène

Université Paris-Sud, Département de Mathématiques

Email: jlct@math.u-psud.fr

Bibliografia

  1. J.-L. Colliot-Thelène, J.-J. Sansuc, “La $R$-equivalence sur les tores”, Ann. Sci. Ecole Norm. Sup. (4), 10:2 (1977), 175–229
  2. J.-L. Colliot-Thelène, J.-J. Sansuc, “La descente sur les varietes rationnelles. II”, Duke Math. J., 54:2 (1987), 375–492
  3. A. Grothendieck, “Le groupe de Brauer. III. Exemples et complements”, Dix exposes sur la cohomologie des schemas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 88–188
  4. J.-L. Colliot-Thelène, “Birational invariants, purity and the Gersten conjecture”, $K$-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., 58, Part I, Amer. Math. Soc., Providence, RI, 1995, 1–64
  5. A. Beauville, J.-L. Colliot-Thelène, J.-J. Sansuc, P. Swinnerton-Dyer, “Varietes stablement rationnelles non rationnelles”, Ann. of Math. (2), 121:2 (1985), 283–318
  6. J.-P. Serre, Corps locaux, Publ. Inst. Math. Univ. Nancago, VIII, Actualites Sci. Indust., no. 1296, 2-ème ed., Hermann, Paris, 1968, 245 pp.
  7. A. Pirutka, “Varieties that are not stably rational, zero-cycles and unramified cohomology”, Algebraic geometry: Salt Lake City 2015, v. 2, Proc. Sympos. Pure Math., 97, Part 2, Amer. Math. Soc., Providence, RI, 2018, 459–483
  8. J.-L. Colliot-Thelène, D. Coray, “L'equivalence rationnelle sur les points fermes des surfaces rationnelles fibrees en coniques”, Compositio Math., 39:3 (1979), 301–332
  9. У. Фултон, Теория пересечений, Мир, М., 1989, 583 с.
  10. S. Gille, “Permutation modules and Chow motives of geometrically rational surfaces”, With appendix by J.-L. Colliot-Thelène, J. Algebra, 440 (2015), 443–463
  11. В. А. Исковских, “Минимальные модели рациональных поверхностей над произвольными полями”, Изв. АН СССР. Сер. матем., 43:1 (1979), 19–43
  12. J. Kollar, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, Berlin, 1996, viii+320 pp.
  13. Ю. И. Манин, Кубические формы, Наука, М., 1972, 304 с.
  14. В. А. Исковских, “Рациональные поверхности с пучком рациональных кривых и с положительным квадратом канонического класса”, Матем. сб., 83(125):1(9) (1970), 90–119
  15. J.-L. Colliot-Thelène, J.-J. Sansuc, “On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch”, Duke Math. J., 48:2 (1981), 421–447
  16. A. Varilly-Alvarado, “Arithmetic of del Pezzo surfaces”, Birational geometry, rational curves, and arithmetic, Simons Symp., Springer, Cham, 2013, 293–319
  17. В. А. Исковских, “Бирациональные свойства поверхности степени 4 в $mathbf P^4_k$”, Матем. сб., 88(130):1(5) (1972), 31–37
  18. J. S. Frame, “The classes and representations of the groups of 27 lines and 28 bitangents”, Ann. Mat. Pura Appl. (4), 32 (1951), 83–119
  19. H. P. F. Swinnerton-Dyer, “The zeta function of a cubic surface over a finite field”, Proc. Cambridge Philos. Soc., 63 (1967), 55–71
  20. T. Urabe, “Calculation of Manin's invariant for Del Pezzo surfaces”, Math. Comp., 65:213 (1996), 247–258
  21. B. Banwait, F. Fite, D. Loughran, “Del Pezzo surfaces over finite fields and their Frobenius traces”, Math. Proc. Cambridge Philos. Soc., Publ. online 2018
  22. Shuijing Li, Rational points on Del Pezzo surface of degree $1$ and $2$, Thesis (Ph.D.), Rice Univ., 2010, 78 pp.

Declaração de direitos autorais © Colliot-Thélène J., 2019

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies