Deterministic and random attractors for a wave equation with sign changing damping

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper gives a detailed study of long-time dynamics generated byweakly damped wave equations in bounded 3D domains where the dampingcoefficient depends explicitly on time and may change sign. It is shown thatin the case, where the non-linearity is superlinear, the considered equationremains dissipative if the weighted mean value of the dissipation rateremains positive and that the conditions of this type are not sufficient inthe linear case. Two principally different cases are considered. In thecase when this mean is uniform (which corresponds to deterministicdissipation rate), it is shown that the considered system possesses smoothuniform attractors as well as non-autonomous exponential attractors. In thecase where the mean is not uniform (which corresponds to the randomdissipation rate, for instance, when this dissipation rate is generated bythe Bernoulli process), the tempered random attractor is constructed. Incontrast to the usual situation, this random attractor is expected to haveinfinite Hausdorff and fractal dimensions. The simplified model exampledemonstrating infinite-dimensionality of the random attractor is alsopresented.

Авторлар туралы

Qingquan Chang

Lanzhou University

Email: ddli_dan@yeah.net

Dandan Li

Lanzhou University

Email: ddli_dan@yeah.net

Chunyou Sun

Lanzhou University

Email: ddli_dan@yeah.net

PhD, Professor

Sergey Zelik

Lanzhou University; University of Surrey; Keldysh Institute of Applied Mathematics of Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: s.zelik@surrey.ac.uk

Doctor of physico-mathematical sciences, Senior Researcher

Әдебиет тізімі

  1. L. I. Schiff, “Nonlinear meson theory of nuclear forces. I. Neutral scalar mesons with point-contact repulsion”, Phys. Rev. (2), 84:1 (1951), 1–9
  2. I. E. Segal, “The global Cauchy problem for a relativistic scalar field with power interaction”, Bull. Soc. Math. France, 91 (1963), 129–135
  3. J. J. Mazo, A. V. Ustinov, “The sine-Gordon equation in Josephson-junction arrays”, The sine-Gordon model and its applications, Nonlinear Syst. Complex., 10, Springer, Cham, 2014, 155–175
  4. W. H. Hayt, Engineering electromagnetics, 5th ed., McGraw-Hill, Inc., New York, 1989, 472 pp.
  5. S. V. Marshall, G. G. Skitek, Electromagnetic concepts and applications, 3rd ed., Prentice-Hall International, Inc., London, 1990, xviii+507 pp.
  6. A. Majda, Introduction to PDEs and waves for the atmosphere and ocean, Courant Lect. Notes Math., 9, New York Univ., Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2003, x+234 pp.
  7. J. Pedlosky, Geophysical fluid dynamics, 2nd ed., Springer-Verlag, Berlin, 1987, xiv+710 pp.
  8. K. P. Hadeler, “Reaction telegraph equations and random walk systems”, Stochastic and spatial structures of dynamical systems (Amsterdam, 1995), Konink. Nederl. Akad. Wetensch. Verh. Afd. Natuurk. Eerste Reeks, 45, North-Holland, Amsterdam, 1996, 133–161
  9. M. G. Grillakis, “Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity”, Ann. of Math. (2), 132:3 (1990), 485–509
  10. J. Shatah, M. Struwe, “Well-posedness in the energy space for semilinear wave equations with critical growth”, Int. Math. Res. Not. IMRN, 1994:7 (1994), 303–309
  11. J. Shatah, M. Struwe, “Regularity results for nonlinear wave equations”, Ann. of Math. (2), 138:3 (1993), 503–518
  12. C. D. Sogge, Lectures on non-linear wave equations, 2nd ed., International Press, Boston, MA, 2008, x+205 pp.
  13. Ж.-Л. Лионс, Некоторые методы решения нелинейных краевых задач, Мир, М., 1972, 587 с.
  14. А. В. Бабин, М. И. Вишик, Аттракторы эволюционных уравнений, Наука, M., 1989, 296 с.
  15. R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp.
  16. V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp.
  17. S. Zelik, “Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities”, Discrete Contin. Dyn. Syst., 11:2-3 (2004), 351–392
  18. K. Jörgens, “Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen”, Math. Z., 77 (1961), 295–308
  19. J. Ginibre, G. Velo, “The global Cauchy problem for the non linear Klein–Gordon equation”, Math. Z., 189:4 (1985), 487–505
  20. R. S. Strichartz, “Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations”, Duke Math. J., 44:3 (1977), 705–714
  21. M. D. Blair, H. F. Smith, C. D. Sogge, “Strichartz estimates for the wave equation on manifolds with boundary”, Ann. Inst. H. Poincare C Anal. Non Lineaire, 26:5 (2009), 1817–1829
  22. N. Burq, G. Lebeau, F. Planchon, “Global existence for energy critical waves in 3-D domains”, J. Amer. Math. Soc., 21:3 (2008), 831–845
  23. N. Burq, F. Planchon, “Global existence for energy critical waves in 3-D domains: Neumann boundary conditions”, Amer. J. Math., 131:6 (2009), 1715–1742
  24. A. Haraux, “Dissipativity in the sense of Levinson for a class of second-order nonlinear evolution equations”, Nonlinear Anal., 6:11 (1982), 1207–1220
  25. A. Haraux, “Two remarks on hyperbolic dissipative problems”, Nonlinear partial differential equations and their applications, Collège de France seminar (Paris, 1983–1984), v. 7, Res. Notes in Math., 122, Pitman, Boston, MA, 1985, 161–179
  26. J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988, x+198 pp.
  27. J. K. Hale, “Stability and gradient dynamical systems”, Rev. Mat. Complut., 17:1 (2004), 7–57
  28. T. Caraballo, J. A. Langa, F. Rivero, A. N. Carvalho, “A gradient-like nonautonomous evolution process”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20:9 (2010), 2751–2760
  29. J. Arrieta, A. N. Carvalho, J. K. Hale, “A damped hyerbolic equation with critical exponent”, Comm. Partial Differential Equations, 17:5-6 (1992), 841–866
  30. Dandan Li, Chunyou Sun, Qingquan Chang, “Global attractor for degenerate damped hyperbolic equations”, J. Math. Anal. Appl., 453:1 (2017), 1–19
  31. E. Feireisl, “Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent”, Proc. Roy. Soc. Edinburgh Sect. A, 125:5 (1995), 1051–1062
  32. L. Kapitanski, “Minimal compact global attractor for a damped semilinear wave equation”, Comm. Partial Differential Equations, 20:7-8 (1995), 1303–1323
  33. V. Kalantarov, A. Savostianov, S. Zelik, “Attractors for damped quintic wave equations in bounded domains”, Ann. Henri Poincare, 17:9 (2016), 2555–2584
  34. А. К. Савостьянов, С. В. Зелик, “Равномерные аттракторы для волнового уравнения с нелинейностью пятой степени и мерой в качестве внешней силы”, УМН, 75:2(452) (2020), 61–132
  35. C. Bardos, G. Lebeau, J. Rauch, “Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary”, SIAM J. Control Optim., 30:5 (1992), 1024–1065
  36. N. Burq, R. Joly, “Exponential decay for the damped wave equation in unbounded domains”, Commun. Contemp. Math., 18:6 (2016), 1650012, 27 pp.
  37. E. Feireisl, E. Zuazua, “Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent”, Comm. Partial Differential Equations, 18:9-10 (1993), 1539–1555
  38. J. Rauch, M. Taylor, “Exponential decay of solutions to hyperbolic equations in bounded domains”, Indiana Univ. Math. J., 24 (1974), 79–86
  39. E. Zuazua, “Exponential decay for the semilinear wave equation with locally distributed damping”, Comm. Partial Differential Equations, 15:2 (1990), 205–235
  40. A. Haraux, P. Martinez, J. Vancostenoble, “Asymptotic stability for intermittently controlled second-order evolution equations”, SIAM J. Control Optim., 43:6 (2005), 2089–2108
  41. A. Haraux, M. A. Jendoubi, “Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term”, Evol. Equ. Control Theory, 2:3 (2013), 461–470
  42. P. Martinez, J. Vancostenoble, “Stabilization of the wave equation by on-off and positive-negative feedbacks”, ESAIM Control Optim. Calc. Var., 7 (2002), 335–377
  43. R. A. Smith, “Asymptotic stability of $x"+a(t)x'+x = 0$”, Quart. J. Math. Oxford (2), 12:1 (1961), 123–126
  44. A. H. Nayfeh, D. T. Mook, Nonlinear oscillations, Wiley-Interscience [John Wiley & Sons], New York, 1995, 720 pp.
  45. G. Fragnelli, D. Mugnai, “Stability of solutions for some classes of nonlinear damped wave equations”, SIAM J. Control Optim., 47:5 (2008), 2520–2539
  46. G. Fragnelli, D. Mugnai, “Stability of solutions for nonlinear wave equations with a positive–negative damping”, Discrete Contin. Dyn. Syst. Ser. S, 4:3 (2011), 615–622
  47. P. Freitas, “On some eigenvalue problems related to the wave equation with indefinite damping”, J. Differential Equations, 127:1 (1996), 320–335
  48. R. Joly, “New examples of damped wave equations with gradient-like structure”, Asymptot. Anal., 53:4 (2007), 237–253
  49. V. Kalantarov, S. Zelik, “A note on a strongly damped wave equation with fast growing nonlinearities”, J. Math. Phys., 56:1 (2015), 011501, 10 pp.
  50. J. H. E. Cartwright, V. M. Eguiluz, E. Hernandez-Garcia, O. Piro, “Dynamics of elastic excitable media”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9:11 (1999), 2197–2202
  51. А. Б. Каток, Б. Хасселблат, Введение в современную теорию динамических систем, Факториал, М., 1999, 768 с.
  52. X. Цикон, Р. Фрeзе, В. Кирш, Б. Саймон, Операторы Шрeдингера с приложениями к квантовой механике и глобальной геометрии, Мир, M., 1990, 408 с.
  53. W. Magnus, S. Winkler, Hill's equation, Intersci. Tracts Pure Appl. Math., 20, Interscience Publishers John Wiley & Sons, New York–London–Sydney, 1966, viii+127 pp.
  54. V. Chepyzhov, M. Vishik, “A Hausdorff dimension estimate for kernel sections of non-autonomous evolution equations”, Indiana Univ. Math. J., 42:3 (1993), 1057–1076
  55. P. E. Kloeden, J. A. Langa, “Flattening, squeezing and the existence of random attractors”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2077 (2007), 163–181
  56. A. N. Carvalho, J. A. Langa, J. C. Robinson, Attractors for infinite-dimensional non-autonomous dynamical systems, Appl. Math. Sci., 182, Springer, New York, 2013, xxxvi+409 pp.
  57. A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential attractors for dissipative evolution equations, RAM Res. Appl. Math., 37, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994, viii+183 pp.
  58. A. Miranville, “Exponential attractors for nonautonomous evolution equations”, Appl. Math. Lett., 11:2 (1998), 19–22
  59. M. Efendiev, S. Zelik, A. Miranville, “Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems”, Proc. Roy. Soc. Edinburgh Sect. A, 135:4 (2005), 703–730
  60. A. Miranville, S. Zelik, “Attractors for dissipative partial differential equations in bounded and unbounded domains”, Handbook of differential equations: evolutionary equations, v. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, 103–200
  61. H. Crauel, F. Flandoli, “Attractors for random dynamical systems”, Probab. Theory Related Fields, 100:3 (1994), 365–393
  62. L. Arnold, Random dynamical systems, Springer Monogr. Math., Springer-Verlag, New York, 1998, xvi+586 pp.
  63. H. Crauel, F. Flandoli, “Hausdorff dimension of invariant sets for random dynamical systems”, J. Dynam. Differential Equations, 10:3 (1998), 449–474
  64. A. Debussche, “Hausdorff dimension of a random invariant set”, J. Math. Pures Appl. (9), 77:10 (1998), 967–988
  65. A. Shirikyan, S. Zelik, “Exponential attractors for random dynamical systems and applications”, Stoch. Partial Differ. Equ. Anal. Comput., 1:2 (2013), 241–281
  66. J. Aaronson, “On the ergodic theory of non-integrable functions and infinite measure spaces”, Israel J. Math., 27:2 (1977), 163–173

© Chang Q., Li D., Sun C., Зелик С.V., 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>