Fundamental Noises and Sensitivity Limits of Interferometric Gravitational-Waves Detectors of a New Generation
- Авторлар: Bilenko I.A.1, Vyatchanin S.P.1, Mitrofanov V.P.1, Strigin S.E.1, Khalili F.Y.2
-
Мекемелер:
- M.V. Lomonosov Moscow State University
- Russian Quantum Center
- Шығарылым: Том 125, № 1 (2025): THEMED SECTION: FUNDAMENTAL PROBLEMS OF GRAVITATIONAL- WAVE ASTRONOMY AND GRAVIMETRY
- Беттер: 44-55
- Бөлім: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://journals.rcsi.science/1605-8070/article/view/303913
- DOI: https://doi.org/10.22204/2410-4639-2025-125-01-44-55
- ID: 303913
Дәйексөз келтіру
Толық мәтін
Аннотация
The work is aimed at developing a new field of science – gravitational-wave astronomy and is devoted to the development of methods for increasing the sensitivity of new generation interferometric gravitational wave detectors based on: 1) reducing the level of fundamental noise in interferometer mirrors due to their cooling to low temperatures, reducing dissipation in mechanical oscillation modes and reducing optical absorption in mirrors, where monocrystalline high-purity silicon is chosen as the base material for the mirrors, although the possibility of using sapphire and other materials is not excluded; 2) development of effective methods for quantum measurements of the impact of gravitational waves on interferometer mirrors, allowing the impact of quantum noise in gravitational-wave interferometer signal recording systems to be reduced and the standard quantum sensitivity limit to be overcome, as well as methods for suppressing the effect of parametric oscillatory instability that occurs in gravitational-wave interferometers at high optical pumping powers. The theoretical analysis, based on the latest advances in quantum measurement theory and quantum optics, is combined with detailed experimental studies of optical absorption and mechanical dissipation processes in elements of gravitational-wave detectors.
Негізгі сөздер
Авторлар туралы
Igor Bilenko
M.V. Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: igorbilenko@gmail.com
Ресей, 1, bld. 2, Leninskie Gory, Moscow, 119991, Russia
Sergey Vyatchanin
M.V. Lomonosov Moscow State University
Email: svyatchanin@phys.msu.ru
Professor
Ресей, 1, bld. 2, Leninskie Gory, Moscow, 119991, RussiaValeriy Mitrofanov
M.V. Lomonosov Moscow State University
Email: vpmitrofanov@physics.msu.ru
Professor
Ресей, 1, bld. 2, Leninskie Gory, Moscow, 119991, RussiaSergey Strigin
M.V. Lomonosov Moscow State University
Email: strigin@physics.msu.ru
Ресей, 1, bld. 2, Leninskie Gory, Moscow, 119991, Russia
Farit Khalili
Russian Quantum Center
Email: f.khalili@rqc.ru
Ресей, 30, Block 1, Bolshoy Boulevard, Skolkovo Innovation Center, Moscow, 121205, Russia
Әдебиет тізімі
- B.P. Abbott, R. Abbott, T.D. Abbott et al. Phys. Rev. Lett., 2016, 116, 061102. doi: 10.1103/PhysRevLe tt.116.13110 3.
- M. Bailes, B.K. Berger, P.R. Brady et al. Nat. Rev. Phys., 2021, 3, 344. DOI : 10.1038/s42254-021-00303-8.
- M. Punturo, M. Abernathy, F. Acernese et al. Clas. Quant. Grav., 2010, 27, 194002 . doi: 10.1088/0264-9381/27/19/194002.
- R.X. Adhikari, K. Arai, A.F. Brooks et al. Clas. Quant. Grav., 2020, 37, 165003. doi: 10.1088/1361-6382/ab9143.
- S.L. Danilishin, F.Y. Khalili, H. Miao Living Rev. Relativ., 2019, 22, 2. doi: 10.1007/s41114-019-0018-y.
- S.L. Danilishin, F.Y. Khalili Living Rev. Relativ., 2012,15, 5. doi: 10.1007/lrr-2 012-5.
- F.Ya. Khalili, E. Zeuthen Phys. Rev. A, 2021,103. 043721. doi: 10.1103/PhysRevA.103.04372 1.
- F.Y. Khalili, E.S. P olzik Phys. Rev. Lett., 2018, 121, 031101. doi: 10.1103/PhysRevLett.121.031101.
- C.B. Møller, R.A. Thomas, G. Vasilakis et al. Nature, 2017, 547, 191. doi: 10.1038/nature22980.
- E. Zeuthenl, E.S. Polzik, F.Ya. Khalili PRX Quantum, 2022, 3, 020362. doi: 10.1103/PRXQ uantum.3.020362.
- M.E. Tse, H. Yu, N. Kijbunchoo et al. Phys. Rev. Lett., 2019, 123, 231107. doi: 10.1103/PhysRevLett.123.231107.
- C. Caves Phys. Rev. D, 1981, 23, 1693. doi: 10.1103/PhysRevD.23.1693.
- D. Salykina, F. Khalili Symmetry, 2023, 15, 774. doi: 10.3390/sym15030774.
- A. Karpenko, S.P. Vyatchanin Phys. Rev. A, 2020, 102, 023513. doi: 10.1103/PhysRevA.102.023513.
- A. Karpenko, S .P. Vyatchanin Phys. Rev. A, 2022, 105, 063506. doi: 10.1103/Phys RevA.105.063506.
- S.P. Vyatchanin, A.I. Nazmievt, A.B. Matsko Phys. Rev. A, 2021, 104, 023519. doi: 10.1103/PhysRevA.104.023519.
- S.P. Vyatchanin, A.B. Matsko Phys. Lett. A, 2022, 424, 127849. doi: 10.1016/j.physleta.2021.127849.
- S.P. Vyatcha nin, A.I. Nazmiev, A.B. Matsko Phys. Rev. A, 2022, 106, 053711. doi: 10.1103/PhysRevA.106.053711.
- V.B. Braginsky, S.E. Strigin, S. Vyatchanin Phys. Lett. A, 2001, 287, 331. doi: 10.1016/S0375-9601(01)00510.
- M. Evans, S. Gras, P. Fritschel et al. Phys. Rev. Lett., 2015, 114, 161102. DOI : 10.1103/PhysRevLett.114.161102.
- S.E Strigin Physics Open, 2020, 5, 100035. doi: 10.1016/j.physo.2020.100035.
- С.Е. Стрыгин Вест. Моск. ун-та, Сер. 3. Физ. Астрон., 2024. 79(4), 2440301. DOI : 10.55959/MSU0579-9392.79.2440301.
- C. Blair, S. Gras, R. Abbot et al. Phys. Rev. Lett., 2017, 118, 151102. DO I: 10.1103/PhysRevLett.118.151102.
- J. Degallaix, Ch. Zhao, L. Ju, D. Blair J. Opt. Soc. Am. B, 2007, 24(6), 133 6. doi: 10.1364/JOSAB.24.001336.
- S. Biscans, S. Gras, C.D. Blair, J. Driggers, M. Evans, P. Fritschel, T. Hardwick, G. Mansell Phys. Rev. D, 2019, 100, 122003. doi: 10.1103/PhysRevD.100.122003.
- F. Bruns, S.P. Vyatchanin, J. Dickmann, R. Glaser, D. Heinert, R. Nawrodt, S. Kroker Phys. Rev. D., 2020, 102, 022006. DOI: 10. 1103/PhysRevD.102.022006.
- V.B. Braginsky, M.L. Gorodetsky, V.S. Il’chenko Proc. SPIE, 1993, 2097, 283. doi: 10.1117/12.183155.
- M. Aston, M.A. Barton, A.S. Bell et al. Clas. Quant. Grav., 2012, 29, 235004. doi: 10.1088/0264-9381/29/23/235004.
- Y.Yu. Klochkov, L.G.Prokhorov, M.S. Matiushechkina, R.X. Adhikari, V.P. Mitrofanov Rev. Sci. Instr., 2022, 93, 014501. doi: 10.1063/5.0076311.
- Y.Yu. Klochkov, V.P. Mitrofanov Appl. P hys. Lett., 2023, 122, 142109. doi: 10.1063/5.0143587.
Қосымша файлдар
