Broadband IR Photoconductivity of a Silicon p-n Junction with the Participation of Donor States of Sulfur and Its Temperature Control

Capa

Citar

Texto integral

Resumo

A new physical effect of strong low-temperature broadband (2–40 μm) IR photoconductivity in the p–n junction of silicon formed by an n-hyperdoped layer on a p-doped substrate has been studied. Broadband IR photoconductivity is provided by a clearly pronounced discrete spectrum of neutral and singly ionized donor states of the substitutional atomic impurity and sulfur clusters near the bottom of the conduction band (the so-called “intermediate” band up to 0.6 eV wide), the population distribution within which is smooth over the spectrum, well pronounced, and controlled in amplitude by thermal excitation in the range of 5–250 K. As a result, on the basis of a single silicon photocell, the choice of temperature mode allows registration of radiation in the far-near infrared range for a wide range of diverse practical problems – solar energy, thermal imaging and bioimaging.

Sobre autores

Sergey Kudryashov

Р.N. Lebedev Physical Institute, RAS

Autor responsável pela correspondência
Email: kudryashovsi@lebedev.ru
Rússia, 53 Leninsky Ave., Moscow, 119991, Russia

Alena Nastulyavichus

Р.N. Lebedev Physical Institute, RAS

Email: nastulyavichusaa@lebedev.ru
Rússia, 53 Leninsky Ave., Moscow, 119991, Russia

Kirill Boldyrev

Institute of Spectroscopy, RAS

Email: kn.boldyrev@gmail.com
Rússia, 5 Fizicheskaya Str., Troitsk, Moscow, 108840, Russia

Mikhail Kovalev

Р.N. Lebedev Physical Institute, RAS

Email: kovalevms@lebedev.ru
53 Leninsky Ave., Moscow, 119991, Russia

Bibliografia

  1. S. Kudryashov, A. Nastulyavichus, G. Krasin, K. Khamidullin, K. Boldyrev, D. Kirilenko, A. Yachmenev, D. Ponomarev, G. Komandin, S. Lebedev, D. Prikhod’ko, M. Kovalev. Opt. Laser Technol., 2023, 158, 108873. doi: 10.1016/j.optlastec.2022.108873.
  2. L. Gyongyosi, S. Imre. Comput. Sci. Rev., 2019, 31, 51. doi: 10.1016/j.cosrev.2018.11.002.
  3. N. Volet, A. Spott, E.J. Stanton, M.L. Davenport, L. Chang, I.D. Peters, T.C. Briles, I. Vurgaftman, J.R. Meyer, J.E. Bowers. Laser Photonics Rev., 2017, 11(2), 1600165. doi: 10.1002/lpor.201600165.
  4. D.J. Thomson, L. Shen, J.J. Ackert, E. Huante-Ceron, A.P. Knights, M. Nedeljkovic, A.C. Peacock, G.Z. Mashanovich. Opt. Express, 2014, 22(9), 10825. doi: 10.1364/OE.22.010825.
  5. V. Kesaev, A. Nastulyavichus, S. Kudryashov, M. Kovalev, N. Stsepuro, G. Krasin. Opt. Mater. Express, 2021, 11(7), 1971. doi: 10.1364/OME.428047.
  6. V.V. Gavrushko, A.S. Ionov, O.R. Kadriev, V.A. Lastkin. Tech. Phys., 2017, 62, 338. doi: 10.1134/S1063784217020104.
  7. S.Q. Lim, J.S. Williams. Micro, 2022, 2(1), 1. doi: 10.3390/micro2010001.
  8. Z. Tong, M. Bu, Y. Zhang, D. Yang, X. Pi. J. Semicond., 2022, 43(9), 093101. doi: 10.1088/1674-4926/43/9/093101.
  9. S. Kudryashov, A. Nastulyavichus, D. Kirilenko, P. Brunkov, A. Shakhmin, A. Rudenko, N. Melnik, R. Khmelnitskii, V. Martovitskii, M. Uspenskaya, D. Prikhodko, S. Tarelkin, A. Galkin, T. Drozdova, A. Ionin. ACS Appl. Electron. Mater., 2021, 3(2), 769. doi: 10.1021/acsaelm.0c00914.
  10. M.A. Foster, A.C. Turner, J.E. Sharping, B.S. Schmidt, M. Lipson, A.L. Gaeta. Nature, 2006, 441(7096), 960. doi: 10.1038/nature04932.
  11. M.A. Foster, R. Salem, D.F. Geraghty, A.C. Turner-Foster, M. Lipson, A.L. Gaeta. Nature, 2008, 456(7218), 81. doi: 10.1038/nature07430.
  12. V.S. Vavilov, A.R. Chelyadinskij. Physics–Uspekhi, 1995, 165(3), 347. doi: 10.3367/UFNr.0165.199503g.0347.
  13. P. Migliorato, C.T. Elliott. Solid State Electron., 1978, 21(2), 443. doi: 10.1016/0038-1101(78)90276-9.
  14. Yu.A. Astrov, S.A. Lynch, V.B. Shuman, L.M. Portsel, A.A. Machova, A.N. Lodygin. Semiconductors [Fizika i tekhnika poluprovodnikov], 2013, 47(2), 211 (in Russian).
  15. B.K. Newman, M.J. Sher, E. Mazur, T. Buonassisi. Appl. Phys. Lett., 2011, 98(25), 251905. doi: 10.1063/1.3599450.
  16. C.B. Simmons, A.J. Akey, J.J. Krich, J.T. Sullivan, D. Recht, M.J. Aziz, T. Buonassisi. J. Appl. Phys., 2013, 114(24), 243514. doi: 10.1063/1.4854835.
  17. I. Umezu, J.M. Warrender, S. Charnvanichborikarn, A. Kohno, J.S. Williams, M. Tabbal, D.G. Papazoglou, Zhang Xi-Ch., M.J. Aziz. J. Appl. Phys., 2013, 113(21), 213501. doi: 10.1063/1.4804935.
  18. M.J. Sher, E. Mazur. Appl. Phys. Lett., 2014, 105(3), 032103. doi: 10.1063/1.4890618.
  19. L.P. Cao, Z.D. Chen, C.L. Zhang, J.H. Yao. Front. Phys., 2015, 10(4), 1. doi: 10.1007/s11467-015-0468-y.
  20. K.F. Wang, P. Liu, S. Qu, Y. Wang, Z. Wang. J. Mater. Sci., 2015, 50(9), 3391. doi: 10.1007/s10853-015-8895-2.
  21. M.V. Limaye, S.C. Chen, C.Y. Lee, L.Y. Chen, S.B. Singh, Y.C. Shao, Y.F. Wang, S.H. Hsieh, H.C. Hsueh, L.W. Chiou, C.H. Chen, L.Y. Jang, C.L. Cheng, W.F. Pong, Y.F. Hu. Sci. Rep., 2015, 5(1), 1. doi: 10.1038/srep11466.
  22. T. Gimpel, S. Winter, M. Bossmeyer, W. Schade. Sol. Energy Mater. Sol. Cells., 2018, 180, 168. doi: 10.1016/j.solmat.2018.03.001.
  23. B. Franta, D. Pastor, H.H. Gandhi, P.H. Rekemeyer, S. Gradečak, M.J. Aziz, E. Mazur. J. Appl. Phys., 2015, 118(22), 225303. doi: 10.1063/1.4937149.
  24. S. Paulus, P. McKearney, F. Völklein, S. Kontermann. AIP Advances, 2021, 11(7), 075014. doi: 10.1063/5.0044678.
  25. E. Janzén, R. Stedman, G. Grossmann, H.G. Grimmeiss. Phys. Rev. B, 1984, 29(4), 1907. doi: 10.1103/PhysRevB.29.1907.
  26. P. Wagner, C. Holm, R. Oeder, W. Zulehner. In ASSP, Vol. 24, FRG, Berlin, Heidelberg: Springer Verlag, 1984, pp. 191–228. doi: 10.1007/BFb0107451.
  27. R.E. Peale, K. Muro, A.J. Sievers. Materials Science Forum, 1991, 65–66, 151. doi: 10.4028/ href='www.scientific.net/MSF.65-66.151' target='_blank'>www.scientific.net/MSF.65-66.151.
  28. X. Jin, Q. Wu, S. Huang, G. Deng, J. Yao, H. Huang, P. Zhao, J. Xu. Opt. Mater., 2021, 113, 110874. doi: 10.1016/j.optmat.2021.110874.
  29. S. Kudryashov, K. Boldyrev, A. Nastulyavichus, D. Prikhod’ko, S. Tarelkin, D. Kirilenko, P. Brunkov, A. Shakhmin, R. Khamidullin, G. Krasin, M. Kovalev. Opt. Mater. Express, 2021, 11(11), 3792. doi: 10.1364/OME.438023.
  30. S.I. Kudryashov, L.V. Nguyen, D.A. Kirilenko, P.N. Brunkov, A.A. Rudenko, N.I. Busleev, A.L. Shakhmin, A.V. Semencha, R.A. Khmelnitsky, N.N. Melnik, I.N. Saraeva, A.A. Nastulyavichus, A.A. Ionin, E.R. Tolordava, Y.M. Romanova. ACS Appl. Nano Mater., 2018, 1(6), 2461. doi: 10.1021/acsanm.8b00392.
  31. N. Stsepuro, M. Kovalev, G. Krasin, I. Podlesnykh, Y. Gulina, S. Kudryashov. Photonics, 2022, 9, 815. doi: 10.3390/photonics9110815.
  32. D.V. Lavrukhin, A.E. Yachmenev, Y.G. Goncharov, K.I. Zaytsev, R.A. Khabibullin, A.M. Buryakov, E.D. Mishina, D.S. Ponomarev. IEEE Trans. Terahertz Sci. Technol., 2021, 11(4), 417. doi: 10.1109/TTHZ.2021.3079977.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Kudryashov S.I., Nastulyavichus A.A., Boldyrev K.N., Kovalev M.S., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).