Fundamental Research and Development of Key Materials in New High-Performance Alkaline Membrane Fuel Cells

Cover Page

Cite item

Full Text

Abstract

The research, part of an international collaboration between BRICS countries, was conducted by scientists from S.P. Korolev Samara National Research University, the A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences (Russia), Beijing University of Chemical Technology, China, and the International Advanced Research Center for Powder Metallurgy and New Materials (India). This article presents the key results of the Russian team’s research on the development of catalysts with minimal platinum content, as well as non-platinum catalysts for alkaline fuel cells (AFCs) operating in the oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR). Carbon materials were used as supports, and the influence of the nature of the carbon supports, dopants, and modifiers (platinum, molybdenum, silver, palladium, iron, nickel, cobalt, etc.) on the catalytic performance of the resulting materials in ORR and HOR was studied.
Testing the synthesized catalysts in an electrochemical cell showed that the catalyst based on mesoporous carbon modified with 7% palladium (SMK-3_Pd) is comparable in performance to a commercial platinum catalyst containing 40% Pt and exhibits high corrosion resistance

About the authors

Andzhela V. Bulanova

Samara National Research University

Author for correspondence.
Email: shafiro@mail.ru

Professor

Russian Federation, 34, Moskovskoye shosse, Samara, 443086

Roman V. Shafigulin

Samara National Research University

Email: shafiro@mail.ru
Russian Federation, 34, Moskovskoye shosse, Samara, 443086

Vera A. Bogdanovskaya

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: bogdanovsk@mail.ru
Russian Federation, 31 (4), Leninsky Prospekt, Moscow, 119071

Kirill Yu. Vinogradov

Samara National Research University

Email: winyur@yandex.ru
Russian Federation, 34, Moskovskoye shosse, Samara, 443086

Vladimir N. Andreev

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: 6337624@mail.ru
Russian Federation, 31 (4), Leninsky Prospekt, Moscow, 119071

Elena O. Tokranova

Samara National Research University

Email: fileona@mail.ru
Russian Federation, 34, Moskovskoye shosse, Samara, 443086

Oleg V. Korchagin

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: oleg-kor83@mail.ru
Russian Federation, 31 (4), Leninsky Prospekt, Moscow, 119071

Sergey V. Vostrikov

Samara State Technical University

Email: vosser@mail.ru

Head of Department

Russian Federation, 244, Molodogvardeyskaya st., Samara, 443100

References

  1. W.R.W. Daud et al. Renew. Energy, 2017, 113, 620–638. doi: 10.1016/j.renene.2017.06.027.
  2. Y. Wang et al. Mater. today, 2020, 32, 178–203. doi: 10.1016/j.mattod.2019.06.005.
  3. W.J. Zeng et al. J. Electroanal. Chem., 2022, 922, 116728. doi: 10.1016/j.jelechem.2022.116728.
  4. W.S. Jung et al. J. Electrochem. Soc., 2022, 169(7), 074501. doi: 10.1149/1945-7111/ac7827.
  5. P. Chandran et al. Sci. Rep., 2018, 8(1), 3591. doi: 10.1038/s41598-018-22001-9.
  6. M.R. Tarasevich, E.S. Davydova Russ. J. Electrochem., 2016, 52, 193–219. doi: 10.1134/S1023193516030113.
  7. W. Wang et al. Adv. Sci., 2017, 4(4), 1600486. doi: 10.1002/advs.201600486.
  8. T. Maiyalagan et al. J. Phys. Chem. C, 2012, 116(3), 2630–2638. doi: 10.1021/jp210266n.
  9. C. Ruiz-García et al. Ind. Eng. Chem. Res., 2019, 58(11), 4355–4363. doi: 10.1021/acs.iecr.8b06084.
  10. X. Tan et al. RSC Adv., 2018, 8(59), 33688–33694. doi: 10.1039/C8RA07248E.
  11. H. Zhu et al. Nano lett., 2013, 13(6), 2947–2951. doi: 10.1021/nl401325u.
  12. C. Guo et al. Nanoscale Res. Lett., 2020, 15, 1–14. doi: 10.1186/s11671-020-3254-x.
  13. Y.N. Zaitseva et al. J. Sib. Fed. Univ. Chem., 2019, 12(3), 395–404. doi: 10.17516/1998-2836-0136.
  14. V. Vij et al. ACS Catal., 2017, 7(10), 7196–7225. doi: 10.1021/acscatal.7b01800.
  15. Y. Zhao et al. Catalysts, 2018, 8(2), 53. doi: 10.3390/catal8020053.
  16. R.B. Patil et al. ACS Appl. Energy Mater., 2019, 2(4), 2524–2533. doi: 10.1021/acsaem.8b02087.
  17. A. Laszczyńska et al. Int. J. Hydrog. Energy, 2021, 46(44), 22813–22831. doi: 10.1016/j.ijhydene.2021.04.103.
  18. J. Sun et al. Sustain. Energy Fuels, 2020, 4(9), 4531–4537. doi: 10.1039/D0SE00694G.
  19. T. Lopes et al. ChemElectroChem, 2016, 3(10), 1580–1590. doi: 10.1002/celc.201600354.
  20. V.M. Truong et al. Int. J. Precis. Eng. Manuf.-Green Technol., 2019, 6(4), 711–721. doi: 10.1007/s40684-019-00123-3.
  21. B. Ruiz-Camacho et al. Int. J. Hydrog. Energy, 2022, 47(70), 30147–30159. doi: 10.1016/j.ijhydene.2022.03.190.
  22. Y. Liu et al. RSC Adv., 2016, 6(39), 32676–32684. doi: 10.1039/C6RA00752J.
  23. G. Wu et al. J. Chin. Chem. Soc., 2020, 67(7), 1189–1194. doi: 10.1002/jccs.201900429.
  24. R. Ning et al. Langmuir, 2013, 29(43), 13146–13151. doi: 10.1021/la4031014.
  25. T. Van Hung et al. J. Phys. D: Appl. Phys., 2020, 54(8), 085303. doi: 10.1088/1361-6463/abc6d6.
  26. A. Eftekhari, Z. Fan Mater. Chem. Front., 2017, 1(6), 1001–1027. doi: 10.1039/C6QM00298F.
  27. W. Xu et al. J. Mater. Chem. A, 2016, 4(42), 16272–16287. doi: 10.1039/C6TA05304A.
  28. B. Hasse et al. Catal. Today, 2015, 249, 30–37. doi: 10.1016/j.cattod.2014.10.049.
  29. Y. Wang et al. Sep. Purif. Technol., 2013, 106, 32–37. doi: 10.1016/j.seppur.2012.12.013.
  30. Z. Zhao et al. Adv. Mater., 2015, 27(43), 6834–6840. doi: 10.1002/adma.201503211.
  31. Y. Kado et al. J. Solid State Electrochem., 2019, 23, 1061–1081. doi: 10.1007/s10008-019-04211-x.
  32. D. Wu et al. Nanotechnology, 2017, 28(43), 435503. doi: 10.1088/1361-6528/aa89b5.
  33. S. Song et al. Inorg. Chem., 2021, 60(10), 7498–7509. doi: 10.1021/acs.inorgchem.1c00824.
  34. B. Han et al. Int. J. Hydrogen Energy, 2020, 45(54), 29645–29654. doi: 10.1016/j.ijhydene.2019.09.123.
  35. E.A. Martynenko et al. J. Appl. Electrochem., 2023, 53(4), 645–659. doi: 10.1007/s10800-022-01808-5.
  36. A.V. Bulanova et al. Catalysts, 2022, 12(9), 1013. doi: 10.3390/catal12091013.
  37. I.E. Vernigor et al. Russ. J. Electrochem., 2023, 59(1), 12–23. doi: 10.1134/S1023193523010111.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bulanova A.V., Shafigulin R.V., Bogdanovskaya V.A., Vinogradov K.Y., Andreev V.N., Tokranova E.O., Korchagin O.V., Vostrikov S.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).