New Mechanisms of Polar Amplification Triggered by the Arctic Sea Ice Loss
- Authors: Ivanov V.V.1
-
Affiliations:
- Lomomosov Moscow State University, Arctic and Antarctic Research Institute
- Issue: Vol 114, No 2 (2022): THEMED SECTION: UNITED NATIONS DECADE OF OCEAN SCIENCES FOR SUSTAINABLE DEVELOPMENT (2021 to 2030)
- Pages: 40-50
- Section: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://journals.rcsi.science/1605-8070/article/view/304027
- DOI: https://doi.org/10.22204/2410-4639-2022-114-02-40-50
- ID: 304027
Cite item
Full Text
Abstract
The effect of positive feedbacks is associated with the phenomenon of the so-called Polar amplification, due to which an increase of the surface air temperature in the Arctic in recent decades was approximately 2.5 times higher than in the other latitudinal zones. Reduction of the Arctic sea ice acted as a “trigger” that provided an intensification of feedbacks, which were either not manifested at all or were ineffective under the conditions of the prevalence of thick consolidated ice. In addition to the well-known and described in the literature feedbacks that are acting in high latitudes, two new mechanisms are introduced: “seasonal memory” in the ice cover properties and “atlantification”. It has been shown that these mechanisms contribute to the further reduction of the Arctic sea ice. In the East-Atlantic sector of the Arctic Ocean both mechanisms operate in concert, enhancing the end result. According to climate scenarios, Arctic warming is projected to intensify in the coming decades, causing changes in various environments. It can be expected that an important role in this will be played by positive feedbacks that provide the Polar amplification in modern conditions, when the Arctic climate system is in an unstable transitional state.
About the authors
Vladimir V. Ivanov
Lomomosov Moscow State University, Arctic and Antarctic Research Institute
Author for correspondence.
Email: vladimir.ivanov@aari.ru
Russian Federation, 1 Leninskiye Gory, GSP-1, Moscow, 119991, Russia
38 Bering Str., St. Petersburg, 199397, Russia
References
- M. Guarino, L.C. Sime, D. Schröeder, I. Malmierca-Vallet, E. Rosenblum, M. Ringer, J. Jeff Ridley, D. Feltham, C. Bitz, E.J. Stei, E. Wolff, J. Stroeve, A. Sellar Nat. Clim. Chang., 2020, 10, 928. doi: 10.1038/s41558-020-0865-2.
- IPCC, 2014: Summary for Policymakers In Climate Change 2014: Impacts, Adaptation, and Vulnerabilit. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Eds C.B. Field et al., USA, NY, New York, and United Kingdom, Cambridge, Cambridge University Press, 2014, pp. 1–32. (https:// www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartA_ FINAL.pdf).
- A.P. Makshtas Teplovoy balans arkticheskikh ldov v zimniy period [Heat Balance of Arctic Sea Ice in Winter], USSR, Leningrad, Gydrometeoizdat, 1984, 67 pp.
- D.A. Rothrock, Y. Yu, G.A. Maykut Geophys. Res. Lett., 1999, 26(23), 3469. doi: 10.1029/1999GL010863.
- V.V Ivanov, V.A. Alexeev, T.A. Alexeeva, N.V. Koldunov, I.A. Repina, A.V. Smirnov Issledovanie Zemli iz kosmosa [Earth Exploration from Space], 2013, №4, 50 (in Russian).V.V. Ivanov D. Sci. Thes. (Physics & Mathematics) [Dissertation for the degree of a Doctor of physical and mathematical sciences], Shirshov Institute of Oceanology, RAS, RF, Moscow, 2012, 305 pp. (in Russian).
- M. Serreze, R. Barry Global Planet. Change, 2011, 77, 85. doi: 10.1016/j.gloplacha.2011.03.004.
- M.G. Asplin, R. Galley, D. G. Barber, S. Prinsenberg J. Geophys. Res., 2012, 117, C06025. doi: 10.1029/2011JC007221.
- J.-C. Gascard, J, Festy, H. le Goff et al. Eos Trans. AGU, 89(3), 21. doi: 10.1029/2008EO030001.
- D.K. Perovich, B. Light, H. Eicken, K.F. Jones, K. Runciman, S.V. Nghiem Geophys. Res. Lett., 2007, 34, L19505. doi: 10.1029/2007GL031480.
- A.V. Pnyushkov, I.V. Polyakov J. Phys. Oceanogr., 2012, 42(1), 78. doi: 10.1175/JPO-D-11-064.1.
- J.C. Stroeve,·M.C. Serreze, M.M. Holland, J.E. Kay, J. Malanik, A.P. Barrett Climatic Change, 2012, 110, 1005. doi: 10.1007/s10584-011-0101-1.
- V.V. Ivanov, I.A. Repina IOP Conf. Ser.: Earth Environ. Sci., 2019, 231, 012024. doi: 10.1088/1755-1315/231/1/012024.
- P.V. Aksenov, V.V. Ivanov Problemy Arktiki i Antarktiki [Arctic and Antarctic Research], 2018, 64(1), 42 (in Russian).
- doi: 10.30758/0555-2648-2018-64-1-42-54.
- Yu.P. Doronin, D.E. Kheysin Morskoj led [Sea Ice], USSR, Leningrad, Gidrometeoizdat, 1975, 318 pp. (in Russian).
- E. Blanchard-Wrigglesworth, K. C. Armour, C.M. Bitz, E. Deweaver J. Clim., 2011, 24(1), 231. doi: 10.1175/2010JCLI3775.1.
- R.W. Lindsay, J. Zhang J. Clim., 2005, 18(22), 4879. doi: 10.1175/JCLI3587.1.
- N.N. Zubov Ldy Arktiki, [Arctic Ice], USSR, Moscow, Glavsevmorputi Publ. House, 1945, 360 pp. (in Russian).
- V.A. Alexeev, J.E. Walsh, V.V. Ivanov, V.A. Semenov, A.V. Smirnov Environ. Res. Let., 2017, 12(8), 084011. doi: 10.1088/1748-9326/aa7a1d.
- D.J. Cavalieri, C.L. Parkinson, P. Gloersen, H.J. Zwally Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/ISSMI Passive Microwave Data, Ver. 1, USA, Colorado, Boulder, NASA National Snow and Ice Data Center Distributed Active Archive Center, 1996 (updated yearly). doi: 10.5067/8GQ8LZQVL0VL.
- E.G. Nikiforov, A.O. Shpaykher Zakonomernosti formirovaniya krupnomashtabnyh kolebanij gidrologicheskogo rejima Severnogo Ledovitogo okeana [Features of Formation of Large-Scale Oscillations of Hydrological Regime of the Arctic Ocean], Leningrad, Gydrometeoizdat Publ., 1980, 269 pp. (in Russian).
- S. Lind, R.B. Ingvaldsen, T. Furevik Nat. Clim. Change, 2018, 8, 634. doi: 10.1038/s41558-018-0205-y.
- V.V. Ivanov, A.V .Smirnov, V.A. Alexeev, N.V. Koldunov, I.A. Repina, V.A. Semenov J. Geophys. Res.: Oceans, 2018, 123, 6581. doi: 10.1029/2018JC013995.
- I.V. Polyakov, A.V. Pnyushkov, M.B. Alkire, I.M. Ashik, T.M. Baumann, E.C. Carmack, I. Goszczko, J. Guthrie, V.V. Ivanov, T. Kanzow, R. Krishfield, R. Kwok, A. Sundfjord, J. Morison, R. Rember, A. Yulin Science, 2017, 356(6335), 285. doi: 10.1126/science.aai82.
- I.V. Polyakov, T.P. Rippeth, I. Fer, M.B. Alkire, T.M Baumann, E.C. Carmack, R. Ingvaldsen, V.V. Ivanov, M. Janout, S. Lind, L. Padman, A.V. Pnyushkov, R. Rember J. Climate, 2020, 33, 8107. doi: 10.1175/JCLI-D-19-0976.1.
- IPCC, 2018: Summary for Policymakers In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Eds V. Masson- Delmotte et al., in press, pp. 1–24. (https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf).
Supplementary files
