Increasing the Sensitivity of Interferometric Measurements Using Squeezed Light

Cover Page

Cite item

Full Text

Abstract

In this work, we investigate the possibility of using quantum squeezed light generated during propagation of ultrashort optical pulses in a medium with third-order (Kerr) nonlinearity to increase the sensitivity of interferometric measurements. In a demonstration experiment, using squeezed light states obtained in optical fibers with third-order nonlinearity, we experimentally demonstrated an increase in the interferometer sensitivity by 4 dB beyond the shot noise level, whereas in previous demonstrations, squeezed vacuum states generated in media with quadratic nonlinearity were used to increase the sensitivity. For this purpose, we used an original system based on nonlinear polarization-maintaining fibers to obtain squeezing of the quantum uncertainty of the polarization state of femtosecond pulses better than –5 dB, which has high long-term stability without active stabilization systems.

About the authors

Alexey V. Andrianov

A.V. Gaponov-Grekhov Institute of Applied Physics, RAS

Author for correspondence.
Email: andrian@ipfran.ru
Russian Federation, 46, Ulyanov Str., Nizhny Novgorod, 603950, Russia

References

  1. M.E. Gertsenshtein, V.I. Pustovoit Sov. Phys. JETP, 1963, 16, 433.
  2. R. Loudon Phys. Rev. Lett., 1981, 47, 815. doi: 10.1103/PhysRevLett.47.815.
  3. C.M. Caves Phys. Rev. D, 1981, 23, 1693. doi: 10.1103/PhysRevD.23.1693.
  4. S. Daryanoosh, S. Slussarenko, D.W. Berry, H.M. Wiseman, G.J. Pryde Nat. Commun., 2018, 9(1), 4606. doi: 10.1038/s41467-018-06601-7.
  5. F. Acernese, M. Agathos, L. Aiello et al. Phys. Rev. Lett., 2019, 123. doi: 10.1103/PhysRevLett.123.231108.
  6. H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin Phys. Rev. D, 2021, 65, 022002. doi: 10.1103/PhysRevD.65.022002.
  7. L. McCuller, C. Whittle, D. Ganapathyet et al. Phys. Rev. Lett., 2020, 124, 171102. DOI: /10.1103/PhysRevLett.124.171102.
  8. H. Miao, H. Yang, R.X. Adhikari, Y. Chen Clas. Quant. Grav., 2014, 31, 165010. doi: 10.1088/0264-9381/31/16/165010.
  9. R. Schnabel Phys. Rep., 2017, 684, 1, 2017. doi: 10.1016/j.physrep.2017.04.001.
  10. N. Kalinin, T. Dirmeier, A.A. Sorokin, E.A. Anashkina, L.L. Sánchez‐Soto, J.F. Corney, G. Leuchs, A.V. Andrianov Adv. Quantum Technol., 2023, 6(3), 2200143. doi: 10.1002/qute.202200143.
  11. W.H. Zurek Nature, 2001, 412(6848), 712. doi: 10.1038/35089017.
  12. M. Xiao, L.-A. Wu, H.J. Kimble Phys. Rev. Lett., 1987, 59, 278. DOI: /10.1103/PhysRevLett.59.278.
  13. P. Grangier, R.E. Slusher, B. Yurke, A. LaPorta Phys. Rev. Lett., 1987, 59, 2153. DOI: /10.1103/PhysRevLett.59.2153.
  14. N. Kalinin, T. Dirmeier, A.A. Sorokin, E.A. Anashkina, L.L. Sánchez-Soto, J.F. Corney, G. Leuchs, A.V. Andrianov Nanophotonics, 2023, 12(14), 2945. doi: 10.1515/nanoph-2023-0032.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Andrianov A.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).