Th e Relationship between the Particle Size Distribution of Aluminum Powder and the Structural-Phase Composition and Properties of the Al2O3—AlN Coating Formed under the Infl uence of Electric Arc Nitrogen Plasma

Cover Page

Cite item

Full Text

Abstract

The relationship between the particle size distribution of aluminum powder and the structural-phase composition and properties of the Al2O3–AlN coating formed under the influence of electric arc plasma has been studied. Two types of Al powders were used: micropowder with a particle size of ~20–120 μm and nanopowder with a particle size of ~40–100 nm. It was found that coatings obtained from Al micropowder are agglomerates of pure Al interspersed with AlN and Al5O6N clusters. Coatings obtained from Al nanopowder contain Al2O3 as a base interspersed with AlN and Al5O6N agglomerates, as well as a noticeable proportion of unreacted Al. The surface morphology of the samples is heterogeneous and porous. In the process of measuring microhardness using the indentation method, a correlation with the local phase composition of the surface was discovered. The Al2O3 and AlN phases had the highest microhardness, about 9.097±0.324 GPa and 17.800±0.674 GPa, respectively. The results obtained demonstrate the promise of applying Al2O3–AlN coatings using low-temperature plasma to improve the service life of steel structures.

About the authors

Ivan S. Volchkov

Kurchatov Complex of Crystallography and Photonics

Author for correspondence.
Email: Volch2862@gmail.com
Russian Federation, 59 Leninsky Ave., Moscow, 119333, Russia

Pavel L. Podkur

Kurchatov Complex of Crystallography and Photonics

Email: vverde85@yandex.ru
Russian Federation, 59 Leninsky Ave., Moscow, 119333, Russia

Arsen E. Muslimov

Kurchatov Complex of Crystallography and Photonics

Email: amuslimov@mail.ru
Russian Federation, 59 Leninsky Ave., Moscow, 119333, Russia

Makhach Kh. Gadzhiev

Joint Institute for High Temperatures, RAS

Email: makhach@mail.ru
Russian Federation, 13 Bd. 2, Izhorskaya Str., Moscow, 125412, Russia

Maxim V. Ilyichev

Joint Institute for High Temperatures, RAS

Email: imvpl@mail.ru
Russian Federation, 13 Bd. 2, Izhorskaya Str., Moscow, 125412, Russia

Vladimir M. Kanevsky

Kurchatov Complex of Crystallography and Photonics

Email: kanev@crys.ras.ru
Russian Federation, 59 Leninsky Ave., Moscow, 119333, Russia

References

  1. L.M. Goldman, S. Balasubramanian, U. Kashalikar, R. Foti, S. Sastri In Proc. SPIE 8708, Window and Dome Technologies and Materials XIII (4 June 2013), US, MD, Baltimore, 2013, 870804. doi: 10.1117/12.2016867.
  2. D.C. Harris Infrared Phys. Technol., 1998, 39(4), 185. doi: 10.1016/S1350-4495(98)00006-1.
  3. S.S. Byeon, K. Wang, Y.G. Jung, B.H. Koo Surf. Coat. Technol., 2010, 204(20), 3196. doi: 10.1016/j.surfcoat.2010.03.010.
  4. M. Nose, T. Kawabata, S. Ueda, T. Nagae, A. Saiki, K. Matsuda, K. Terayama, S. Ikeno J. Jpn Soc. Powder Powder Metall., 2008, 55(11), 795. doi: 10.2497/jjspm.55.795.
  5. A.P. Tarasov, A.M. Ismailov, M.K. Gadzhiev, I.D. Venevtsev, A.E. Muslimov, I.S. Volchkov, S.R. Aidamirova, A.S. Tyuftyaev, A.V. Butashin, V.M. Kanevsky Photonics, 2023, 10, 1354. doi: 10.3390/photonics10121354.
  6. A. Muslimov, S. Antipov, M. Gadzhiev, V. Kanevsky Metals, 2023, 13, 1927. doi: 10.3390/met13121927.
  7. A.E. Muslimov, M.K. Gadzhiev, V.M. Kanevsky Coatings, 2021, 11, 1369. doi: 10.3390/coatings11111369.
  8. E.K. Isakaev, O.A. Sinkevich, A.S. Tyuftyaev, V.F. Chinnov High Temperature, 2010, 48(1), 97. doi: 10.1134/S0018151X10010141.
  9. E.K. Isakaev, A.S. Tyuftyaev, M.Kh. Gadzhiev Physics and Chemistry of Materials Treatment [Fizika i khimia obrabotki materialov], 2016, 3, 27 (in Russian).
  10. W.C. Oliver, G.M. Pharr J. Mater. Res., 2004, 19(1), 3. doi: 10.1557/jmr.2004.19.1.3.
  11. H.X. Willems, M.M.R.M. Hendrix, G. de With, R. Metselaar J. European Ceram. Soc., 1992, 10(4), 339. doi: 10.1016/0955-2219(92)90089-V.
  12. F.I. Panteleenko, T.I. Bendik, V.A. Sidorov, V.Yu. Sereda, A.A. Litvinko In Proc. Irst International Scientific and Technical Conference: Current Issues and Advanced Welding Technologies in Science and Industry, BY, Mogilev, 2022, pp. 170–175 (in Russian).
  13. V.V. Tuliev, I.S. Tashlykov Proceedings of BSTU [Trudy BGTU], 2016, 6, 96 (in Russian).
  14. Z. Yin, S. Tao, X. Zhou, C. Ding J. Phys. D Appl. Phys., 2007, 40(22), 7090. doi: 10.1088/0022-3727/40/22/034.
  15. I. Yonenaga MRS Internet J. Nitride Semicond. Res., 2002, 7(6), 1. doi: 10.1557/s1092578300000326.
  16. J. Cintas, E.S. Caballero, J.M. Montes, F.G. Cuevas, C. Arevalo Adv. Mater. Sci. Eng., 2014, 2014, 617241. doi: 10.1155/2014/617241.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Volchkov I.S., Podkur P.L., Muslimov A.E., Gadzhiev M.K., Ilyichev M.V., Kanevsky V.M.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).