Nucleation and Growth of Monodisperse Hexagonal NaYF4 Nanoparticles Synthesized by Trifl uoroacetate Precursors Thermolysis

Cover Page

Cite item

Full Text

Abstract

Synthesis process conditions for NaRF4 (R – rare-earth elements) nanoparticle production with specified structural and dimensional characteristics have been optimized by manipulating the technological parameters of the trifluoroacetate precursors thermolysis: temperature, duration of the experiment and composition of the reaction medium. The temporary and thermal parameters of NaRF4 nanoparticles growth from the nucleation stage to the formation of final nanocrystals have been analized with the direct sampling method. Limiting factors in the nanoparticles synthesis in both cubic and hexagonal polymorphic phases have been identified by transmission electron microscopy in detail. The key role of the heating rate of the reaction mixture at the initial synthesis stage on the structural and morphological characteristics of this type nanoobjects formation is demonstrated. The features of the phase transformation of nanoparticles from the metastable α-phase to the stable β-phase during thermolysis process are discussed.

About the authors

Natalia A. Arkharova

Shubnikov Institute of Crystallography, KCC&Ph, NRC Kurchatov Institute

Author for correspondence.
Email: natalya.arkharova@yandex.ru
Russian Federation, 59, bld. 1, Leninsky Ave., Moscow, 119333, Russia

Anton S. Orekhov

Shubnikov Institute of Crystallography, KCC&Ph, NRC Kurchatov Institute

Email: orekhov.anton@gmail.com
Russian Federation, 59, bld. 1, Leninsky Ave., Moscow, 119333, Russia

Alexander V. Koshelev

Shubnikov Institute of Crystallography, KCC&Ph, NRC Kurchatov Institute

Email: avkoshelev03@gmail.com
Russian Federation, 59, bld. 1, Leninsky Ave., Moscow, 119333, Russia

Andrey S. Orekhov

Shubnikov Institute of Crystallography, KCC&Ph, NRC Kurchatov Institute

Email: andreyorekhov@gmail.com
Russian Federation, 59, bld. 1, Leninsky Ave., Moscow, 119333, Russia

Denis N. Karimov

Shubnikov Institute of Crystallography, KCC&Ph, NRC Kurchatov Institute

Email: dnkarimov@gmail.com
Russian Federation, 59, bld. 1, Leninsky Ave., Moscow, 119333, Russia

References

  1. G. Liang, H. Wang, H. Shi, H. Wang, M. Zhu, A. Jing, J. Li, G. Li J. Nanobiotechnology, 2020, 18, 154. doi: 10.1186/s12951-020-00713-3.
  2. H. Chen, B. Ding, P. Ma, J. Lin Adv. Drug Deliv. Rev., 2022, 188, 114414. doi: 10.1016/j.addr.2022.114414.
  3. S. Ji, S. Liu, X. Lin, Y. Song, B. Xiao, Q. Feng, W. Li, H. Xu, Z. Cai ACS Photonics, 2021, 8(8), 2311. doi: 10.1021/acsphotonics.1c00452.
  4. Z. Li, T. Ma, S. Li, W. Gu, L. Lu, H. Yang, Y. Dai, R. Wang ACS Nano, 2022, 16(7), 11473. doi: 10.1021/acsnano.2c05840.
  5. X. Jin, S.W. Leow, Y. Fang, L.H. Wong J. Mater. Chem. A, 2023, 11(24), 12992. doi: 10.1039/D3TA00241A.
  6. S. Wilhelm ACS Nano, 2017, 11(11), 10644. doi: 10.1021/acsnano.7b07120.
  7. V. Bastos, P. Oskoei, E. Andresen, M.I. Saleh, B. Rühle, U. Resch-Genger, H. Oliveira Sci. Rep., 2022, 12(1), 3770. doi: 10.1038/s41598-022-07630-5.
  8. J. Shan, Y. Ju Nanotechnology, 2009, 20(27), 275603. doi: 10.1088/0957-4484/20/27/275603.
  9. M. Kraft, C. Würth, M. Kaiser, V. Muhr, T. Hirsch, U. Resch-Genger В The International Conference on Advanced Materials and Nanotechnology (NZ, Queenstown, 12–16 February. 2017), NZ, Queenstown, 2017. (https://opus4.kobv.de/opus4-bam/frontdoor index/index/docId/40093).
  10. A. Nadort, J. Zhao, E.M. Goldys Nanoscale, 2016, 8(27), 13099. doi: 10.1039/C5NR08477F.
  11. J.L. Sommerdijk, A. Bril Philips Tech. Rev., 1974, 34(1), 24.
  12. S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, D. Jin Nat. Commun., 2018, 9(1), 2415. doi: 10.1038/s41467-018-04813-5.
  13. M. Kraft, C. Würth, V. Muhr, T. Hirsch, U. Resch-Genger Nano Res., 2018, 11, 6360. doi: 10.1007/s12274-018-2159-9.
  14. D.N. Karimov, P.A. Demina, A.V. Koshelev, V.V. Rocheva, A.V. Sokovikov, A.N. Generalova, V.P. Zubov, E.V. Khaydukov,
  15. M.V. Koval’chuk, V.Ya. Panchenko Nanotechnol. Russ., 2020, 15(11–12), 655. doi: 10.1134/S1995078020060117.
  16. R. Naccache, Q. Yu, J.A. Capobianco Adv. Opt. Mater., 2015, 3(4), 482. doi: 10.1002/adom.201400628.
  17. C. Li, L. Xu, Z. Liu, Z. Li, Z. Quan, A.A. Al Kheraif, J. Lin Dalton Trans., 2018, 47(26), 8538. doi: 10.1039/c8dt00258d.
  18. Y. Min, X. Ding, B. Yu, Y. Shen, H. Cong Mater. Today Chem., 2023, 27, 101335. doi: 10.1016/j.mtchem.2022.101335.
  19. C. Homann, L. Krukewitt, F. Frenzel, B. Grauel, C. Würth, U. Resch‐Genger, M. Haase Angew. Chem. Int. Ed., 2018, 57(28), 8765. doi: 10.1002/anie.201803083.
  20. T. Rinkel, J. Nordmann, A.N. Raj, M. Haase Nanoscale, 2014, 6(23), 14523. doi: 10.1039/C4NR03833A.
  21. S. Dühnen, T. Rinkel, M. Haase Chem. Mater., 2015, 27(11), 4033. doi: 10.1021/acs.chemmater.5b01013.
  22. C. Ophus Microsc. Microanal., 2019, 25(3), 1. doi: 10.1017/S1431927619000497.
  23. T. Hamaoka, A. Hashimoto, K. Mitsuishi, M. Takeguchi e-J. Surf. Sci. Nanotech., 2018, 16, 247. doi: 10.1380/ejssnt.2018.247.
  24. S. Fang, Y. Wen, C.S. Allen, C. Ophus, G.G. Han, A.I. Kirkland, E. Kaxiras, J.H. Warner Nat. Commun., 2019, 10(1), 1127. doi: 10.1038/s41467-019-08904-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Arkharova N.A., Orekhov A.S., Koshelev A.V., Orekhov A.S., Karimov D.N.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).