Determination of Electrodynamic Parameters of Thin Films in the Composition of Heterostructures Using Methods of Terahertz and Infrared Spectroscopy
- Authors: Komandin G.A.1, Vishnevskiy A.S.2, Seregin D.S.2, Vorotilov K.A.2, Rudenko K.V.3, Miakonkikh A.V.3, Spektor I.E.1
-
Affiliations:
- Prokhorov General Physics Institute, RAS
- MIREA – Russian Technological University
- Valiev Institute of Physics and Technology, RAS
- Issue: Vol 118, No 2 (2023): THEMED SECTION: FUNDAMENTAL PROBLEMS OF MULTILEVEL METALLIZATION SYSTEMS FOR ULTRA-LARGE INTEGRATED CIRCUITS
- Pages: 113-129
- Section: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://journals.rcsi.science/1605-8070/article/view/301407
- DOI: https://doi.org/10.22204/2410-4639-2023-118-02-113-129
- ID: 301407
Cite item
Full Text
Abstract
The article presents the developed methods for studying the dielectric response function of thin films in heterostructures. Particular attention is paid to the technique dealing with moisture-saturated porous thin films. The vibrational absorption bands are parametrized and their contributions to the total dielectric permittivity are determined. The vibrational absorption band in the THz range of organosilicate glasses was analyzed and the effect of moisture saturation and boson peak of an increase in low-frequency dielectric permittivity of at least 10% was revealed. The developed methods are used to restore the optical characteristics of a transparent conducting oxide film of lanthanum nickelate in the THz range.
About the authors
Gennadiy A. Komandin
Prokhorov General Physics Institute, RAS
Author for correspondence.
Email: gakomandin@mail.ru
Russian Federation, 38 Vavilov Str., Moscow, 119991, Russia
Alexey S. Vishnevskiy
MIREA – Russian Technological University
Email: vishnevskiy@mirea.ru
Russian Federation, 78 Vernadsky Ave., Moscow, 119454, Russia
Dmitry S. Seregin
MIREA – Russian Technological University
Email: d_seregin@mirea.ru
Russian Federation, 78 Vernadsky Ave., Moscow, 119454, Russia
Konstantin A. Vorotilov
MIREA – Russian Technological University
Email: vorotilov@mirea.ru
Russian Federation, 78 Vernadsky Ave., Moscow, 119454, Russia
Konstantin V. Rudenko
Valiev Institute of Physics and Technology, RAS
Email: rudenko@ftian.ru
Russian Federation, 34 Nakhimovsky Ave., Moscow, 117218, Russia
Andrey V. Miakonkikh
Valiev Institute of Physics and Technology, RAS
Email: miakonkikh@ftian.ru
Russian Federation, 34 Nakhimovsky Ave., Moscow, 117218, Russia
Igor E. Spektor
Prokhorov General Physics Institute, RAS
Email: igor.spector@yandex.ru
Russian Federation, 38 Vavilov Str., Moscow, 119991, Russia
References
- K. Maex, M.R. Baklanov, D. Shamiryan, F. Lacopi, S.H. Brongersma, Z.S. Yanovitskaya J. App. Phys., 2003, 93, 8793. doi: 10.1063/1.156746.
- A. Grill, D. Neumayer J. Appl. Phys., 2003, 94, 6697. doi: 10.1063/1.1618358.
- G. Kozlov, A. Volkov In Millimeter and Submillimeter Wave Spectroscopy of Solids, TAP, Vol. 74, Ed. G. Grüner, FRG, Berlin, Heidelberg, Springer, 1998, pp. 51–109. doi: 10.1007/BFb0103420.
- G.A. Komandin, A.A. Gavdush, Yu.G. Goncharov, O.E. Porodinkov, V.S. Nozdrin, S.V. Chuchupal, I.E. Spektor Opt. Spectrosc., 2019, 126(5), 514. doi: 10.1134/S0030400X1905014X.
- G.A. Komandin, V.B. Anzin, V.E. Ulitko, A.A. Gavdush, A.A. Mukhin, Y.G. Goncharov, O.E. Porodinkov, I.E. Spektor Opt. Eng., 2020, 59, 061603. doi: 10.1117/1.OE.59.6.061603.
- A.S. Barker Jr., J.J. Hopfield Phys. Rev., 1964, 135, A1732. doi: 10.1103/PhysRev.135.A1732.
- A. Grill J. Vac. Sci.Technol. B, 2016, 34, 020801. doi: 10.1116/1.4943049.
- G.A. Komandin, V.S. Nozdrin, N.V. Chernomyrdin, D.S. Seregin, A.S. Vishnevskiy, V.N. Kurlov, K.A. Vorotilov, A.V. Miakonkikh, A.A. Lomov, K.V. Rudenko, I.E. Spektor J. Phys. D: Appl. Phys., 2022, 55, 025303. doi: 10.1088/1361-6463/ac2ad5.
- G.A. Komandin, V.S. Nozdrin, G.A. Orlov, D.S. Seregin, V.N. Kurlov, K.A. Vorotilov, A.S. Sigov Doklady Physics, 2020, 65, 51. doi: 10.1134/S102833580020056.
- G.A. Komandin, V.S. Nozdrin, A.A. Pronin, O.E. Porodinkov, V.B. Anzin, I.E. Spektor Phys. Solid State, 2020, 62, 267. doi: 10.1134/S1063783420020158.
- P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl Contemp. Phys., 2000, 41, 15. doi: 10.1080/001075100181259.
- V.L. Gurevich, D.A. Parshin, H.R. Schober Phys. Rev. B, 2003, 67, 094203. doi: 10.1103/PhysRevB.67.094203.
- T. Fukasawa, T. Sato, J. Watanabe, Y. Hama, W. Kunz, R. Buchner Phys. Rev. Lett., 2005, 95, 197802. doi: 10.1103/PhysRevLett.95.197802.
- J. Cardoletti, P. Komissinskiy, E. Bruder, C. Morandi, L. Alff J. Appl. Phys., 2020, 128, 104103. doi: 10.1063/5.0019967.
- D. Wu, A. Li, Z. Liu, H. Ling, C.Z. Ge, X. Liu, H. Wang, M. Wang, P. Lu, N. Ming Thin Solid Films, 1998, 336, 172. doi: 10.1016/S0040-6090(98)01223-1.
- M.V. Abrashev, A.P. Litvinchuk, M.N. Ivlev, R.L. Meng, V.N. Popov, V.G. Ivanov, R.A. Chakalov, C. Tomsen Phys. Rev. B, 1999, 59, 4146. doi: 10.1103/PhysRevB.59.4146.
- V.S. Nozdrin, G.A. Komandin, I.E. Spektor, N.V. Chernomyrdin, D.S. Seregin, A.S. Vishnevskiy, K.A. Vorotilov J. Appl. Phys., 2022, 131, 025305. doi: 10.1063/5.0073466.
Supplementary files
