Generation of a Microwave-to-Terahertz Supercontinuum in the Field of High-Power Femtosecond Mid-Infrared Laser Pulses

Cover Page

Cite item

Full Text

Abstract

The ratio of the velocity of laser-field-induced motion of electrons induced by tunneling ionization and speed of light is one of the key physical factors determining the efficiency of nonlinear optical processes in plasma media. We show that the use of powerful ultrashort pulses with a central wavelength in the mid-infrared range enhance plasma nonlinearities in air associated primarily with plasma currents induced by a intense laser field. On this basis, it is possible to implement laser-plasma schemes of the efficient generation of coherent broadband microwave and terahertz radiation, i.e. microwave–terahertz supercontinuum.

About the authors

Alexander V. Mitrofanov

Institute on Laser and Information Technologies, RAS, – Branch of FSRC “Crystallography and Photonics”, RAS

Author for correspondence.
Email: mitralex@inbox.ru
Russian Federation, 1 Sviatoozerskay Str., Shatura, Moscow Reg., 140700, Russia

Dmitry A. Sidorov-Biryukov

Lomonosov Moscow State University

Email: Dima-sidorov@mail.ru
Russian Federation, 1-62 Leninskie Gory, GSP-1, Moscow, 119991, Russia

Aleksandr A. Voronin

Lomonosov Moscow State University

Email: aa.voronin@physics.msu.ru
Russian Federation, 1-62 Leninskie Gory, GSP-1, Moscow, 119991, Russia

Mikhail V. Rozhko

Russian Quantum Center

Email: mv.rozhko@physics.msu.ru
Russian Federation, 30-1 Bolshoi Blvrd, Skolkovo, Moscow, 143025, Russia

Pavel B. Glek

Lomonosov Moscow State University

Email: glek.pb14@physics.msu.ru
1-62 Leninskie Gory, GSP-1, Moscow, 119991, Russia

Maxim M. Nazarov

National Research Center «Kurchatov Institute»

Email: nazarovmax@mail.ru
1 Kurchatov Sqr., Moscow, 123182, Russia

Evgeny E. Serebryannikov

Lomonosov Moscow State University

Email: serebryannikov@gmail.com
Russian Federation, 1-62 Leninskie Gory, GSP-1, Moscow, 119991, Russia

Andrey B. Fedotov

Lomonosov Moscow State University

Email: a.b.fedotov@physics.msu.ru
Russian Federation, 1-62 Leninskie Gory, GSP-1, Moscow, 119991, Russia

References

  1. V.L. Ginzburg Propagation of Electromagnetic Waves in Plasma [Rasprostranenie elektromagnitnykh voln v plazme], USSR, Moscow, Fizmatgiz Publ., 1960, 552 pp. (in Russian).
  2. N. Blombergen, Y.R. Shen Phys. Rev., 1966, 141, 298. doi: 10.1103/PhysRev.141.298.
  3. N.G. Basov, V.Yu. Bychenkov, O.N. Krokhin, M.V. Osipov, A.A. Rupasov, V.P. Silin, G.V. Sklizkov, A.N. Starodub, V.T. Tikhonchuk, A.S. Shikanov Sov. J. Quantum Electron., 1979, 9, 1081. doi: 10.1070/QE1979v009n09ABEH009430.
  4. G.A. Mourou, T. Tajima, S.V. Bulanov Rev. Mod. Phys., 2006, 78, 309. doi: 10.1103/RevModPhys.78.309.
  5. A.M. Zheltikov, N.I. Koroteev Physics-Uspekhi, 1999, 42, 321. doi: 10.1070/PU1999v042n04ABEH000561.
  6. U. Teubner, P. Gibbon Rev. Mod. Phys., 2009, 81, 445. doi: 10.1103/RevModPhys.81.445.
  7. A. Akhmanov, S.M. Gladkov, N.I. Koroteev, A.M. Zheltikov Generation of Optical Radiation Harmonics in the Scattering of Electrons by Ions [Generatsiya garmonik opticheskogo udara pri rasseyanii elektronov na ionakh], USSR, Moscow, Phys. Dep., MSU Publ., 1988, Preprint No. 5 (in Russian).
  8. R.L. Carman, C.K. Rhodes, R.F. Benjamin Phys. Rev. A, 1981, 24, 2649. doi: 10.1103/PhysRevA.24.2649.
  9. T. Brabec, F. Krausz Rev. Mod. Phys., 2000, 72, 545. doi: 10.1103/RevModPhys.72.545.
  10. P.B. Corkum, F. Krausz Nat. Phys., 2007, 3, 381. doi: 10.1038/nphys620.
  11. S.M. Gladkov, N.I. Koroteev, A.M. Zheltikov, A.B. Fedotov Sov. Tech. Phys. Lett., 1988, 19, 610.
  12. A.B. Fedotov, S.M. Gladkov, N.I. Koroteev, A.M. Zheltikov J. Opt. Soc. Am. B, 1991, 8, 363. doi: 10.1364/JOSAB.8.000363.
  13. A.B. Fedotov, A.N. Naumov, V.P. Silin, S.A. Uryupin, A.M. Zheltikov, A.P. Tarasevich, D. von der Linde Phys. Lett. A, 2000, 271, 407. doi: 10.1016/S0375-9601(00)00390-X.
  14. K.Y. Kim, A.J. Taylor, J.H. Glownia, G. Rodriguez Nat. Photonics, 2008, 2, 605. doi: 10.1038/nphoton.2008.153.
  15. D.J. Cook, R.M. Hochstrasser Opt. Lett., 2000, 25, 1210. doi: 10.1364/OL.25.001210.
  16. S. Tzortzakis, G. Méchain, G. Patalano, Y.-B. André, B. Prade, M. Franco, A. Mysyrowicz, J.-M. Munier, M. Gheudin, G. Beaudin, P. Encrenaz Opt. Lett., 2002, 27, 1944. doi: 10.1364/OL.27.001944.
  17. X. Xie, J. Dai, X.-C. Zhang Phys. Rev. Lett., 2006, 96, 075005. doi: 10.1103/PhysRevLett.96.075005.
  18. M.D. Thomson, M. Kreβ, T. Lёoffler, H.G. Roskos Laser Photonics Rev., 2007, 1, 349. doi: 10.1002/lpor.200710025.
  19. T. Balčiūnas, D. Lorenc, M. Ivanov, O. Smirnova, A.M. Zheltikov, D. Dietze, K. Unterrainer, T. Rathje, G.G. Paulus, A. Baltuška, S. Haessler Opt. Express, 2015, 23, 15278. doi: 10.1364/OE.23.015278.
  20. D. Jang, R.M. Schwartz, D. Woodbury, J. Griff-McMahon, A.H. Younis, H.M. Milchberg, K.-Y. Kim Optica, 2019, 6, 1338. doi: 10.1364/OPTICA.6.001338.
  21. A.D. Koulouklidis, C. Gollner, V. Shumakova, V.Yu. Fedorov, A. Pugžlys, A. Baltuška, S. Tzortzakis Nat. Commun., 2020, 11, 292. doi: 10.1038/s41467-019-14206-x.
  22. A.V. Mitrofanov, D.A. Sidorov-Biryukov, M.M. Nazarov, A.A. Voronin, M.V. Rozhko, A.D. Shutov, S.V. Ryabchuk, E.E. Serebryannikov, A.B. Fedotov, A.M. Zheltikov Optica, 2020, 7, 15. doi: 10.1364/OPTICA.7.000015.
  23. A.M. Zheltikov Physics-Uspekhi, 2006, 176, 623. doi: 10.1070/PU2006v049n06ABEH005975.
  24. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, U. Keller Opt. Lett., 2005, 30, 2657. doi: 10.1364/OL.30.002657.
  25. P. Sprangle, J. Peñano, B. Hafizi, C. Kapetanakos Phys. Rev. E, 2004, 69, 066415. doi: 10.1103/PhysRevE.69.066415.
  26. I. Thiele, R. Nuter, B. Bousquet, V. Tikhonchuk, S. Skupin, X. Davoine, L. Gremillet, L. Bergé Phys. Rev. E, 2016, 94, 063202. doi: 10.1103/PhysRevE.94.063202.
  27. A.V. Mitrofanov, A.A. Voronin, D.A. Sidorov-Biryukov, A. Pugžlys, E.A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A.B. Fedotov, A. Baltuška, A.M. Zheltikov Sci. Rep., 2015, 5, 8368. doi: 10.1038/srep08368.
  28. A.V. Mitrofanov, A.A. Voronin, D.A. Sidorov-Biryukov, S.I. Mitryukovsky, A.B. Fedotov, E.E. Serebryannikov, D.V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V.Ya. Panchenko, A. Baltuška, A.M. Zheltikov Optica, 2016, 3, 299. doi: 10.1364/OPTICA.3.000299.
  29. A.V. Mitrofanov, A.A. Voronin, M.V. Rozhko, D.A. Sidorov-Biryukov, A.B. Fedotov, A. Pugžlys, V. Shumakova, S. Ališauskas, A. Baltuška, A.M. Zheltikov Optica, 2017, 4, 1405. doi: 10.1364/OPTICA.4.001405.
  30. T.I. Oh, Y.S. You, N. Jhajj, E.W. Rosenthal, H.M. Milchberg, K.Y. Kim New J. Phys., 2013, 15, 075002. doi: 10.1088/1367-2630/15/7/075002.
  31. W. Rogowski, W. Steinhaus Archiv für Elektrotechnik, 1912, 1, 141. doi: 10.1007/BF01656479.
  32. I. Babushkin, S. Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Bergé, J. Herrmann New J. Phys., 2011, 13, 123029. doi: 10.1088/1367-2630/13/12/123029.
  33. A.A. Voronin, A.M. Zheltikov Phys. Rev. A, 2020, 101, 043813. doi: 10.1103/PhysRevA.101.043813.
  34. C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, V.T. Tikhonchuk Phys. Rev. Lett., 2007, 98, 235002. doi: 10.1103/PhysRevLett.98.235002.
  35. C. D’Amico, A. Houard, S. Aktürk, Y. Liu, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, A. Mysyrowicz New J. Phys., 2007, 10, 013015. doi: 10.1088/1367-2630/10/1/013015.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Mitrofanov A.V., Sidorov-Biryukov D.A., Voronin A.A., Rozhko M.V., Glek P.B., Nazarov M.M., Serebryannikov E.E., Fedotov A.B.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).