Single Photon Detectors Made of Micron Wide Superconducting Strips for Quantum Optics and Photonics

Cover Page

Cite item

Full Text

Abstract

Practical requirements of state-of-the-art quantum optics and photonics stimulate further improvement of superconducting single-photon detectors in the direction of increased area and detector arrays. Superconducting micron-wide strips capable to detect single photons are the way to develop large-area detector suitable for efficient
coupling to free space and multi-mode fibres. Such a detector should combine high detection efficiency, detection rate and low dark counts.
In this work we present the results of the experimental research into single-photon detection mechanism of visible and infrared light in thin superconducting polycrystalline NbN and amorphous MoSi micron-wide strips, in which
critical current close to Ginzburg – Landau depairing current can be reached. The results are used for the research and development of large-area detector for quantum optics, photonics, and quantum computing with photons.

About the authors

Yuliya P. Korneeva

Institute of Nanotechnology of Microelectronics, RAS

Author for correspondence.
Email: korneeva_yuliya@mail.ru
Russian Federation, lockbox 50, Moscow, 115487, Russia

Mikhail A. Dryazgov

National Research University Higher School of Economics

Email: mdryazgov@hse.ru
Russian Federation, 11 Pokrovsky Blvrd., Moscow, 109028, Russia

Denis Y. Vodolazov

Institute for Physics of Microstructures, RAS

Email: dvod2011@mail.ru

Professor

Russian Federation, 7 Academicheskaya Str., Nizhny Novgorod, 603950, Russia

Alexander A. Korneev

National Research University Higher School of Economics

Email: aakorneev@hse.ru

Professor

Russian Federation, 11 Pokrovsky Blvrd., Moscow, 109028, Russia

References

  1. G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov. Appl. Phys. Lett., 2001, 79(6), 705. doi: 10.1063/1.1388868.
  2. A.D. Semenov. Supercond. Sci. Technol., 2021, 34(5), 054002. doi: 10.1088/1361-6668/abef7d.
  3. A.D. Semenov, G.N. Gol’tsman, A.A. Korneev. Physica C: Superconductivity, 2001, 351(4), 349. doi: 10.1016/S0921-4534(00)01637-3.
  4. A. Semenov, A. Engel, H.W. Hubers, K. Il’in, M. Siegel. Eur. Phys. J. B, 2005, 47, 495. doi: 10.1140/epjb/e2005-00351-8.
  5. L.N. Bulaevskii, M.J. Graf, C.D. Batista, V.G. Kogan. Phys. Rev. B, 2011, 83(14), 1. doi: 10.1103/PhysRevB.83.144526.
  6. L.N. Bulaevskii, M.J. Graf, V.G. Kogan. Phys. Rev. B, 2012, 85(1), 014505. doi: 10.1103/PhysRevB.85.014505.
  7. I.E. Zadeh, J. Chang, J.W.N. Los, S. Gyger, A.W. Elshaari, S. Steinhauer, S.N. Dorenbos, V. Zwiller. Appl. Phys. Lett., 2021, 118(19), 190502. doi: 10.1063/5.0045990.
  8. A.N. Zotova, D.Y. Vodolazov. Phys. Rev. B, 2012, 85(2), 024509. doi: 10.1103/PhysRevB.85.024509.
  9. A.N. Zotova, D.Y. Vodolazov. Supercond. Sci. Technol., 2014, 27(12), 125001. doi: 10.1088/0953-2048/27/12/125001.
  10. D.Yu. Vodolazov. Phys. Rev. Applied, 2017, 7(3), 034014. doi: 10.1103/PhysRevApplied.7.034014.
  11. Yu.P. Korneeva, D.Yu. Vodolazov, A.V. Semenov, I.N. Florya, N. Simonov, E. Baeva, A.A. Korneev, G.N. Goltsman, T.M. Klapwijk. Phys. Rev. Applied, 2018, 9(6), 064037. doi: 10.1103/PhysRevApplied.9.064037.
  12. Yu. Korneeva, D. Vodolazov, I. Florya, N. Manova, Eu. Smirnov, A. Korneev, M. Mikhailov, G. Goltsman, T.M. Klapwijk. EPJ Web of Conferences, 2018, 190, 04010. doi: 10.1051/epjconf/201819004010.
  13. J. Chiles, S.M. Buckley, A. Lita, V.B. Verma, J. Allmaras, B. Korzh, M.D. Shaw, J.M. Shainline, R.P. Mirin, S.W. Nam. Appl. Phys. Lett., 2020, 116(24), 242602. doi: 10.1063/5.0006221.
  14. I. Charaev, Y. Morimoto, A. Dane, A. Agarwal, M. Colangelo, K.K. Berggren. Appl. Phys. Lett., 2020, 116(24), 242603. doi: 10.1063/5.0005439.
  15. G. Xu, W. Zhang, L. You, J. Xiong, X. Sun, H. Huang, X. Ou, Y. Pan, Ch. Lv, H. Li, Zh. Wang, X. Xie. Photon. Res., 2021, 9(6), 958. doi: 10.1364/PRJ.419514.
  16. J.L. O’Brien, A. Furusawa, J. Vuckovic. Nat. Photonics, 2009, 3(12), 687. doi: 10.1038/nphoton.2009.229.
  17. H.S. Zhong, H. Wang, Y.H. Deng, M.C. Chen, L.C. Peng, Y.H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.Y. Yang, W.J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, H. Wang, L. Li, N.L. Liu, C.Y. Lu, J.W. Pan. Science, 2020, 370(6523), 1460. doi: 10.1126/science.abe8770.
  18. R. Cheng, C.L. Zou, X. Guo, S. Wang, X. Han, H.X. Tang. Nat. Commun., 2019, 10(1), 4104. doi: 10.1038/s41467-019-12149-x.
  19. M. Yabuno, Sh. Miyajima, Sh. Miki, H. Terai. Optics Express, 2020, 28(8), 12047. doi: 10.1364/OE.38830.
  20. F. Beutel, H. Gehring, M.A. Wolff, C. Schuck, W. Pernice. NPJ Quantum Inf., 2021, 7(1), 40. doi: 10.1038/s41534-021-00373-7.
  21. J. Chiles, I. Charaev, R. Lasenby, M. Baryakhtar, J. Huang, A. Roshko, G. Burton, M. Colangelo, K.V. Tilburg, A. Arvanitaki, S.W. Nam, K.K. Berggren. Phys. Rev. Lett., 2022, 128(23), 231802. doi: 10.1103/PhysRevLett.128.231802.
  22. M. Häußler, R. Terhaar, M.A. Wolff, H. Gehring, F. Beutel, W. Hartmann, N. Walter, M. Tillmann, M. Ahangarianabhari, M. Wahl, T. Röhlicke, H. Rahn, W. Pernice, C. Schuck. Review of Scientific Instruments, 2023, 94(1), 013103. doi: 10.1063/5.0114903.
  23. J.R. Clem, V.G. Kogan. Phys. Rev. B, 2012, 86(17), 174521. doi: 10.1103/PhysRevB.86.174521.
  24. Yu.P. Korneeva, N.N. Manova, M.A. Dryazgov, N.O. Simonov, Ph.I. Zolotov, A.A. Korneev. Supercond. Sci. Technol., 2021, 34(8), 084001. doi: 10.1088/1361-6668/ac0950.
  25. Yu.P. Korneeva, M.Yu. Mikhailov, Yu.P. Pershin, N.N. Manova, A.V. Divochiy, Yu.B. Vakhtomin, A.A. Korneev, K.V. Smirnov, A.G. Sivakov, A.Yu. Devizenko. Supercond. Sci. Technol., 2014, 27(9), 095012. doi: 10.1088/0953-2048/27/9/095012.
  26. J.K.W. Yang, A.J. Kerman, E.A. Dauler, V. Anant, K.M. Rosfjord, K.K. Berggren. IEEE Trans. Appl. Supercond., 2007, 17(2), 581. doi: 10.1109/TASC.2007.898660.
  27. M. Dryazgov, A. Semenov, N. Manova, Y. Korneeva, A. Korneev. J. Phys. Conf. Ser., 2020, 1695(1), 012195. doi: 10.1088/1742-6596/1695/1/012195.
  28. N.N. Manova, N.O. Simonov, Yu.P. Korneeva, A.A. Korneev. J. Phys.: Conf. Ser., 2020, 1695(1), 012116. doi: 10.1088/1742-6596/1695/1/012116.
  29. K. Smirnov, A. Divochiy, Yu. Vakhtomin, P. Morozov, Ph. Zolotov, A. Antipov, V. Seleznev. Supercond. Sci. Technol., 2018, 31(3), 035011. doi: 10.1088/1361-6668/aaa7aa.
  30. Ph.I. Zolotov, A.V. Semenov, A.V. Divochiy, G.N. Goltsman, N.R. Romanov, T.M. Klapwijk. IEEE Trans. Appl. Supercond., 2021, 31(5), 1. doi: 10.1109/TASC.2021.3061923.
  31. D.Yu. Vodolazov, Yu.P. Korneeva, A.V. Semenov, A.A. Korneev, G.N. Goltsman. Phys. Rev. B, 2015, 92(10), 104503. doi: 10.1103/PhysRevB.92.104503.
  32. Yu.P. Korneeva, N.N. Manova, I.N. Florya, M.Yu. Mikhailov, O.V. Dobrovolskiy, A.A. Korneev, D.Yu. Vodolazov. Phys. Rev. Applied, 2020, 13(2), 024011. doi: 10.1103/PhysRevApplied.13.024011.
  33. J.R. Clem, K.K. Berggren. Phys. Rev., 2011, 84(17), 174510. doi: 10.1103/PhysRevB.84.174510.
  34. D. Henrich, P. Reichensperger, M. Hofherr, J.M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, D.Yu. Vodolazov. Phys. Rev. B, 2012, 86(14), 144504. doi: 10.1103/PhysRevB.86.144504.
  35. M. Shcherbatenko, M. Elezov, N. Manova, K. Sedykh, A. Korneev, Yu. Korneeva, M. Dryazgov, N. Simonov, A. Feimov, G. Goltsman, D. Sych. Appl. Phys. Lett., 2021, 118(18), 181103. doi: 10.1063/5.0046049.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Korneeva Y.P., Dryazgov M.A., Vodolazov D.Y., Korneev A.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).