Modeling and dynamics of endogenous and exogenous oxidative stress in vitro


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Relevance. The effect of pro-oxidants on the cell can cause different effects depending on the dose and duration of exposure, therefore, adequate experimental models of oxidative stress (OS) in vitro are needed to study these processes.

The aim of the study was to study the dynamics of OS development in endogenous and exogenous in vitro models.

Material and methods. The study was carried out on a line of Caco-2 cells. Hydrogen peroxide (H2O2) and DL-butyonine sulfoximine (BSO) were added to cells at concentrations of 0.1–100 μM s and 1–500 microns, respectively, at the confluence of 3, 24 and 72 hours. At the end of the exposure, the percentage of viable cells was determined (MTT test), the level of reactive oxygen species (MitoTracker Red CM-H2 XRos), the amount of Nrf2 and glutathione peroxidase (ELISA), the concentration of carbonyl derivatives of proteins (photometric method.)

Results. H2O2 at concentrations of 5–50 μM and BSO – 10; 50; 100 μM cause an increase in the level of carbonyl derivatives of proteins, the level of transcription factor Nrf2 and antioxidant enzyme – glutathione peroxidase at exposure time of 24 and 72 hours. The concentration of H2O2 100 μM and BSO 500 μM are toxic to the Caco-2 cell line. The incubation period of 3 hours does not cause the development of OS.

Conclusion. Hydrogen peroxide at concentrations of 5-50 μM, BSO – 10; 50; 100 μM and exposure time of 24 and 72 hours cause the development of compensated oxidative stress (eustress), and H2O2 at concentrations of 100 μM and BSO – 500 μM are toxic to cells of the Caco-2 line.

Толық мәтін

##article.viewOnOriginalSite##

Авторлар туралы

Yu. Abalenikhina

Ryazan State Medical University

Хат алмасуға жауапты Автор.
Email: abalenihina88@mail.ru

Ph.D. (Biol.), Associate Professor

Ресей, Ryazan

S. Pravkin

Ryazan State Medical University

Email: abalenihina88@mail.ru

Ph.D. (Med.), Associate Professor

Ресей, Ryazan

A. Shchulkin

Ryazan State Medical University

Email: abalenihina88@mail.ru

Dr.Sc. (Med.), Associate Professor

Ресей, Ryazan

E. Rokunov

Ryazan State Medical University

Email: abalenihina88@mail.ru

Student, the Faculty of Medicine

Ресей, Ryazan

D. Nemtinov

Ryazan State Medical University

Email: abalenihina88@mail.ru

Student, the Faculty of Medicine

Ресей, Ryazan

E. Vasilyeva

Ryazan State Medical University

Email: abalenihina88@mail.ru

Student, the Pediatric Faculty

Ресей, Ryazan

E. Yakusheva

Ryazan State Medical University

Email: abalenihina88@mail.ru

Dr.Sc. (Med.), Professor

Ресей, Ryazan

Әдебиет тізімі

  1. Sies H. Introductory Remarks. Ed. Oxidative Stress, Academic Press, London, 1985; 1–8.
  2. Sies H., Cadenas E. Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci. 1985; 311: 617–631.
  3. Jones D.P. Redefining oxidative stress. Antioxid Redox Signal. 2006; 8(9-10):1865–1879.
  4. Sies Н. Oxidative Stress: Eustress and Distress in Redox Homeostasis Stress: Physiology. Biochemistry, and Pathology. 2019; 13: 153–163.
  5. Sies H. On the history of oxidative stress: Concept and some aspects of current development. Current Opinion in Toxicology. 2018; 7: 122–126.
  6. Itoh K., Chiba T., Takahashi S., et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response element. Biochem Biophys Res Commun. 1997; 236: 313–322.
  7. Schreck R., Albermann K., Baeuerle P.A. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells. Free Radic Res Commun. 1992; 17:221–237.
  8. Калинин Р.Е., Сучков И.А., Мжаванадзе Н.Д. и др. Сравнение цитотоксичности синтетических сосудистых протезов in vitro. Российский медико-биологический вестник им. академика И.П. Павлова. 2020; 28(2): 183–192.
  9. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248–54.
  10. Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biology. 2017; 11: 613–619.
  11. Smirnoff N., Arnaud D. Hydrogen peroxide metabolism and functions in plants. New Phytologist. 2019; 2: 1197–1214.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Figure 1. Viability of Caco-2 cells exposed to (a) hydrogen peroxide and (b) DL-butionine sulfoximine for 3, 24, and 72 h (M, n = 3).

Жүктеу (64KB)
3. Figure 2. Change in the level of reactive oxygen species under the action of hydrogen peroxide (H2O2) and D,L-butionine sulfoximine (BSO) in Caco-2 cells: staining with MitoTracker Red CM-H2XRos, ×400

Жүктеу (264KB)
4. Figure 3. The concentration of carbonyl derivatives of proteins in the cytoplasmic fraction of the homogenate upon exposure to hydrogen peroxide (a) at concentrations of 0.1–100 μM and upon exposure to D,L-butionine sulfoximine (b) at concentrations of 1–500 μM and exposure time of 3, 24 and 72 h (M, n = 3); p < 0.05 compared with *control; ^ incubation period 3 hours; + 24 h incubation period (Newman–Keuls test)

Жүктеу (98KB)
5. Figure 4. The amount of Nrf2 in the cytoplasmic fraction of the Caco-2 cell lysate upon exposure to hydrogen peroxide at concentrations of 1–500 μM (left) and DL-butionine sulfoximine at concentrations of 1–500 μM for 3, 24, and 72 h (M ± SD, n = 3)

Жүктеу (53KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).