Modern approaches to the pharmacological treatment of parkinson's disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Enormous progress has been made in the treatment of Parkinson's disease (PD). The heterogeneity of the disease's mechanisms, the variability of symptoms, and their progression are the main reasons for the complexity of pharmacotherapy for PD. Thanks to advances in experimental therapy, many promising treatment methods are emerging. Currently, dopamine-based drugs, such as levodopa and dopamine agonists, are used, as well as drugs that affect other neurotransmitter systems, such as MAO-B and COMT inhibitors. New treatment methods are being developed aimed at reducing neuroinflammation, including neuroprotective therapy, as well as immunotherapy and the use of stem cells. Novel therapies targeting neuroinflammation are under development. These include neuroprotective strategies focused on mitochondria and oxidative stress, as well as innovative approaches such as immunization against alpha-synuclein, cell and gene therapy for delivering glial cell line-derived neurotrophic factor (GDNF), and stem cell transplantation. The identification of novel therapeutic targets and the advancement of personalized medicine are key objectives in the management of this disease.

About the authors

V. N. Fedorov

Yaroslavl State Medical University

Author for correspondence.
Email: fedorov.vladimir@hotmail.com
ORCID iD: 0009-0003-1296-1861
SPIN-code: 4245-8787

Dr.Sc. (Med.), Professor, Head of the Scientific Department of the Institute of Pharmacy 

Russian Federation, 5 Revolutionary str., Yaroslavl, 150000

V. P. Vdovichenko

State Medical University

Email: fedorov.vladimir@hotmail.com
ORCID iD: 0009-0009-6739-6154
SPIN-code: 4873-5508

Ph.D. (Med.), Senior Lecturer of the Department of Pharmacology 

Belarus, 80 Gorkogo str, Grodno, 230009

S. S. Petukhov

Yaroslavl State Pedagogical University named after K.D. Ushinsky

Email: sspp465@mail.ru
ORCID iD: 0009-0007-8435-7689

Engineer, Department of Pharmacological Research, Center for Pharmaceutical Technology Transfer named after M.V. Dorogov

Russian Federation, 108 Respublikanskaya str., Yaroslavl, 150000

N. N. Volkhin

Yaroslavl State Pedagogical University named after K.D. Ushinsky

Email: nicotine200678@gmail.com
ORCID iD: 0000-0002-4275-9037
SPIN-code: 5273-6029

Junior Research Scientist, Department of Pharmacological Research, Center for Pharmaceutical Technology Transfer named after M.V. Dorogov

Russian Federation, 108 Respublikanskaya str., Yaroslavl, 150000

M. K. Korsakov

Yaroslavl State Medical University; Yaroslavl State Pedagogical University named after K.D. Ushinsky

Email: mkkors@mail.ru
ORCID iD: 0000-0003-0913-2571
SPIN-code: 2897-2520

Dr.Sc. (Chem.), Associate Professor, Head of the Department of Biological Chemistry, Director of the Center for Pharmaceutical Technology Transfer named after M.V. Dorogov

Russian Federation, 5 Revolutionary str., Yaroslavl, 15000; 104 Komsomolskaya str., Khabarovsk, 680000

A. V. Arshinov

Yaroslavl State Medical University

Email: a_arshinov@mail.ru
ORCID iD: 0000-0002-0297-8163
SPIN-code: 4974-9170

Dr.Sci. (Med.), Professor, Head of the Department of Propaedeutics of Internal Diseases

Russian Federation, 5 Revolutionary str., Yaroslavl, 150000

A. A. Romanycheva

Yaroslavl State Pedagogical University named after K.D. Ushinsky

Email: kai-ren@yandex.ru
ORCID iD: 0000-0002-7931-1711
SPIN-code: 3994-4146

Ph.D. (Biol.), Research Scientist, Department of Pharmaceutical Development, Center for Pharmaceutical Technology Transfer named after M.V. Dorogov

Russian Federation, 108 Respublikanskaya str., Yaroslavl, 150000

S. S. Suleymanov

Russian-Japanese Medical Center SAIKO

Email: fedorov.vladimir@hotmail.com
ORCID iD: 0000-0002-3176-2716
SPIN-code: 9047-1399

Dr.Sc. (Med.), Professor, Project Development Director

Russian Federation, 104 Komsomolskaya str., Khabarovsk, 680000

References

  1. Hayes M. Parkinson’s Disease and Parkinsonism. Am J Med. 2019; 132(7): 802–807. doi: 10.1016/j.amjmed.2019.03.001.
  2. Simon D.K., Tanner C.M., Brundin P. Parkinson Disease Epidemiology, Pathology, Genetics and Pathophysiology. Clin Geriatr Med. 2020; 36: 1–12. doi: 10.1016/j.cger.2019.08.002.
  3. Murakami H., Shiraishi T., Umehara T. et al. Recent Advances in Drug Therapy for Parkinson's Disease. Intern Med. 2023; 1; 62(1): 33–42. doi: 10.2169/internalmedicine.8940-21.
  4. Lababidi J.M., Azzazy H. Revamping Parkinson's disease therapy using PLGA-based drug delivery systems. NPJ Parkinsons Dis. 2025; 20;11(1): 248. doi: 10.1038/s41531-025-01081-1.
  5. Gómez-Benito M., Granado N., García-Sanz P. et al. Modeling Parkinson's Disease With the Alpha-Synuclein Protein. Front Pharmacol. 2020; 23: 11-356. doi: 10.3389/fphar.2020.00356.
  6. Таппахов А.А., Николаева Т.Я. Современные представ-ления об этиологии и патогенезе болезни Паркинсона. Вестник Северо-Восточного федерального университета им. М.К. Аммосова. Серия: Медицинские науки. 2016; 2(3): 19–27. [Tappakhov A.A., Nikolaeva T.Ya. Modern concepts of the etiology and pathogenesis of Parkinson's disease. Bulletin of the North-Eastern Federal University named after M.K. Ammosov. Series: Medical Sciences. (In Russ.)].
  7. Чернякевич П.Д, Шардакова Я.А., Карпова И.А., Ганеева Е.Р. Болезнь Паркинсона: статистика и современный взгляд на этиологию, патогенез и методы лечения. Международный студенческий научный вестник. 2018; 2: 9. [Chernyakevich P.D., Shardakova Ya.A., Karpova I.A. Parkinson's disease: statistics and modern view on etiology, pathogenesis and methods of treatment. International Student Scientific Bulletin. 2018; 2: 9. (In Russ.)].
  8. Kalia L.V., Lang A.E. Parkinson's disease. Lancet. 2015; 29; 386(9996): 896–912. doi: 10.1016/S0140-6736(14)61393-3.
  9. Armstrong M.J., Okun M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA. 2020; 11; 323(6): 548–560. doi: 10.1001/jama.2019.22360.
  10. Sivanandy P., Leey T.C., Xiang T.C. et al. Systematic Review on Parkinson's Disease Medications, Emphasizing on Three Recently Approved Drugs to Control Parkinson's Symptoms. Int J Environ Res Public Health. 2021; 30; 19(1): 364. doi: 10.3390/ijerph19010364.
  11. Beckers M., Bloem B.R., Verbeek M.M. Mechanisms of peripheral levodopa resistance in Parkinson's disease. NPJ Parkinsons Dis. 2022; 11;8(1): 56. doi: 10.1038/s41531-022-00321-y.
  12. Müller T. Update on the Present and Future Pharmacologic Treatment of Parkinson's Disease. Neurol Ther. 2025; 18. doi: 10.1007/s40120-025-00800-3.
  13. Vanderah, Todd W. Katzung’s Basic & Clinical Pharmacology, 16th Edition. Mc Graw Hill. 2024; 517–537.
  14. Isaacson S.H., Hauser R.A., Pahwa R. Dopamine agonists in Parkinson's disease: Impact of D1-like or D2-like dopamine receptor subtype selectivity and avenues for future treatment. Clin Park Relat Disord. 2023; 7; 9: 100212. doi: 10.1016/j.prdoa.2023.10021212-17;
  15. Haddad F., Sawalha M., Khawaja Y. et al. Dopamine and Levodopa Prodrugs for the Treatment of Parkinson's Disease. Molecules. 2017; 23(1): 40. doi: 10.3390/molecules23010040. PMID: 29295587.
  16. Brooks D.J. Optimizing levodopa therapy for Parkinson's disease with levodopa/carbidopa/entacapone: implications from a clinical and patient perspective. Neuropsychiatr Dis Treat. 2008; 4(1): 39–47. doi: 10.2147/ndt.s1660.
  17. Howland R.H. Medication holidays. J Psychosoc Nurs Ment Health Serv. 2009; 47(9): 15–18. doi: 10.3928/02793695-20090804-01.
  18. Mohammad M.E., Vizcarra J.A., Garcia X. et al. Impact of behavioral side effects on the management of Parkinson patients treated with dopamine agonists. Clin Park Relat Disord. 2021; 4: 100091. doi: 10.1016/j.prdoa.2021.100091.
  19. Raja K., Ramrakhia S., Dev K. et al. The Risk Factors for the Wearing-Off Phenomenon in Parkinson's Disease. Cureus. 2020; 12(9): e10729. doi: 10.7759/cureus.10729.
  20. Perez-Lloret S., Rascol O. Piribedil for the Treatment of Motor and Non-motor Symptoms of Parkinson Disease. CNS Drugs.2016;30(8):703-17. doi: 10.1007/s40263-016-0360-5.
  21. Millan M.J. From the cell to the clinic: a comparative review of the partial D₂/D₃receptor agonist and α2-adrenoceptor antagonist, piribedil, in the treatment of Parkinson's disease. Pharmacol Ther. 2010; 128(2): 229–273. doi: 10.1016/j.pharmthera.2010.06.002.
  22. Rascol O., Fabbri M., Poewe W. Amantadine in the treatment of Parkinson's disease and other movement disorders. Lancet Neurol. 2021; 20(12): 1048–1056. doi: 10.1016/S1474-4422(21)00249-0.
  23. Chew Z.X. The Role of Monoamine Oxidase B Inhibitors in the Treatment of Parkinson's Disease – An Update. CNS Neurol Disord Drug Targets. 2023; 22(3): 329–352. doi: 10.2174/1871527321666211231100255.
  24. Jost W.H. A critical appraisal of MAO-B inhibitors in the treatment of Parkinson’s disease. J Neural Transm. 2022; 129: 723–736; https://doi.org/10.1007/s00702-022-02465-w.
  25. Bhawna K., Meenakshi B., Kapoor A. et al. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies, European Journal of Medicinal Chemistry. 2022; 242: 114655; https://doi.org/10.1016/j.ejmech.2022.114655.
  26. Abbruzzese G., Kulisevsky J., Bergmans B. et al. SYNAPSES Study Investigators Group A European observational study to evaluate the safety and the effectiveness of safinamide in routine clinical practice: The SYNAPSES Trial. J Parkinsons Dis. 2021;11(1):187–198. https://doi.org/10.3233/JPD-219007.
  27. Fox S.H., Katzenschlager R., Lim S.-Y. et al. International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord 2018; 33: 1248–1266; https://doi.org/10.1002/mds.27372.
  28. Binde C.D., Tvete I.F., Gasemyr J. et al. A multiple treatment comparison meta-analysis of monoamine oxidase type-B inhibitors for Parkinson’s disease. Br J Clin Pharmacol. 2018; 84: 1917–1927; https://doi.org/10.1111/bcp.13651.
  29. Yan R. Comparative efficacy and safety of monoamine oxidase type B inhibitors plus channel blockers and monoamine oxidase type B inhibitors as adjuvant therapy to levodopa in the treatment of Parkinson's disease: a network meta-analysis of randomized controlled trials. Eur J Neurol. 2023; 30(4): 1118–1134. doi: 10.1111/ene.15651.
  30. Aboulatta L. Efficacy and Safety of MAO-B Inhibitors Safinamide and Zonisamide in Parkinson's Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. CNS Drugs. 2023; 37(11): 941–956. doi: 10.1007/s40263-023-01048-x.
  31. Sanchez A.P., De La Casa-Fages B., Alonso-Cánovas A., Martínez-Castrillo J.C. Switching from Rasagiline to Safinamide as an Add-On Therapy Regimen in Patients with Levodopa: A Literature Review. Brain Sci. 2023; 13(2): 276. doi: 10.3390/brainsci13020276.
  32. Csoti I., Storch A., Müller W. Drug interactions with selegiline versus rasagiline. Basal Ganglia. 2012; 2(4): S27–S31; https://doi.org/10.1016/j.baga.2012.06.003.
  33. Kaakkola S. Problems with the present inhibitors and a relevance of new and improved COMT inhibitors in Parkinson's disease. Int Rev Neurobiol. 2010; 95: 207–225. doi: 10.1016/B978-0-12-381326-8.00009-0.
  34. Leung C., Rascol O., Fabbri M. Opicapone for Parkinson's disease: clinical evidence and future perspectives. Neurodegener Dis Manag. 2021; 11(3): 193–206. doi: 10.2217/nmt-2021-0006.
  35. Harrison-Jones G., Marston X.L. Opicapone versus entacapone: Head-to-head retrospective data-based comparison of healthcare resource utilization in people with Parkinson's disease new to catechol-O-methyltransferase (COMT) inhibitor treatment. Eur J Neurol. 2023; 30(10): 3132–3141. doi: 10.1111/ene.15990.
  36. Камчатнов П.Р., Скипетрова Л.А., Черемин Р.А. Лекар-ственная терапия пациентов с деменцией. РМЖ. 2025; 4: 18–25. [Kamchatnov P.R., Skipetrova L.A., Cheremin R.A. Lekarstvennaya terapiya bol'-nykh demenciej. RMZH. 2025; 4: 18–25. (In Russ.)]. doi: 10.32364/2225-2282-2025-4-4.
  37. Bohnen N.I, Yarnall A.J, Weil R.S. et al. Cholinergic system changes in Parkinson's disease: emerging therapeutic approaches. Lancet Neurol. 2022; 21(4): 381–392. doi: 10.1016/S1474-4422(21)00377-X.
  38. Carbone F., Djamshidian A., Seppi K., Poewe W. Apomorphine for Parkinson's Disease: Efficacy and Safety of Current and New Formulations. CNS Drugs. 2019; 33(9): 905–918. doi: 10.1007/s40263-019-00661-z.
  39. LeWitt P.A., Guttman M., Tetrud J.W. et al. Study Group. Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces "off" time in Parkinson's disease: a double-blind, randomized, multicenter clinical trial. Ann Neurol. 2008; 63(3): 295–302. doi: 10.1002/ana.21315.
  40. Kondo T., Mizuno Y. Japanese Istradefylline Study Group. A long-term study of istradefylline safety and efficacy in patients with Parkinson disease. Clin Neuropharmacol. 2015; 38(2): 41–46. doi: 10.1097/WNF.0000000000000073.
  41. Sarkar S., Raymick J., Imam S. Neuroprotective and Therapeutic Strategies against Parkinson's Disease: Recent Perspectives. Int J Mol Sci. 2016; 17(6): 904. doi: 10.3390/ijms17060904.
  42. Negida A., Hassan N.M., Aboeldahab H. et al. Efficacy of the iron-chelating agent, deferiprone, in patients with Parkinson's disease: A systematic review and meta-analysis. CNS Neurosci Ther. 2024; 30(2): e14607. doi: 10.1111/cns.14607;
  43. Vijiaratnam N., Girges C., Auld G. et al. Exenatide once weekly over 2 years as a potential disease-modifying treatment for Parkinson's disease: protocol for a multicentre, randomised, double blind, parallel group, placebo controlled, phase 3 trial: The 'Exenatide-PD3' study. BMJ Open. 2021; 11(5): e047993. doi: 10.1136/bmjopen-2020-047993.
  44. Riasi A., Delrobaei M., Salari M. Personalized medication recommendations for Parkinson’s disease patients using gated recurrent units and SHAP interpretability. Sci Rep. 2025; 15: 19074; https://doi.org/10.1038/s41598-025-04217-8.
  45. Tabar V., Sarva H., Lozano A.M. et al. Phase I trial of hEScell-derived dopaminergic neurons for Parkinson’s disease. Nature 641; 2025; 978–983; https://doi.org/10.1038/s41586-025-08845-y.
  46. Sawamoto N., Doi D., Nakanishi E. et al. Phase I/II trial of iPS-cell-derived dopaminergic cells for Parkinson’s disease. Nature. 2025; 641(8064): 971–977; https://doi.org/10.1038/s41586-025-08700-0.
  47. Van Laar A.D., Christine C.W., Phielipp N. et al. Intraputaminal Delivery of Adeno-Associated Virus Serotype 2-Glial Cell Line-Derived Neurotrophic Factor in Mild or Moderate Parkinson's Disease. Mov Disord. 2025; 40(7): 1297–1306. doi: 10.1002/mds.30193.
  48. Antonini A., Bravi D., Sandre M. Immunization therapies for Parkinson's disease: state of the art and considerations for future clinical trials. Expert Opin Investig Drugs. 2020; 29(7): 685–695. doi: 10.1080/13543784.2020.1771693
  49. Knecht L., Folke J., Dodel R. et al. Alpha-synuclein Immunization Strategies for Synucleinopathies in Clinical Studies: A Biological Perspective. Neurotherapeutics. 2022; 19(5): 1489–1502. doi: 10.1007/s13311-022-01288-7.
  50. Siderowf A., Concha-Marambio L., Lafontant D.E. et al. Parkinson's Progression Markers Initiative. Assessment of heterogeneity among participants in the Parkinson's Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. Lancet Neurol. 2023; 22(5): 407–417. doi: 10.1016/S1474-4422(23)00109-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).