The role of Vitamin D in the pathogenesis of some immune-mediated dermatoses

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In recent years, the sunlight vitamin has become extremely popular and almost mandatory to use, especially because of its pleiotropic effects, although until recently its use was limited to the prevention of the development of pathology of the bone system, in particular rickets in children. Being actually a fat-soluble prohormone of a steroid nature, Vitamin D participates in the endocrine, paracrine and autocrine regulation of the body. The pharmacotherapeutic renaissance of calciferol is associated with the discovery of Vitamin D receptors in most cells of the body, and the presence of enzymes synthesizing the active form of Vitamin D extrarenally, in particular, in the skin, has led to renewed interest and broad discussion in the dermatological community. Is the role of non-bone effects of calciferol, mainly its role in the pathogenesis of autoimmune skin diseases, really justified from the point of view of evidence-based medicine, and is the tendency to consume Vitamin D safe?

This article presents the most up-to-date information about the role of Vitamin D deficiency in the mechanisms of immune response development, in some dermatoses. In addition to generalizing the bone and extra-bone functions of Vitamin D to the macroorganism, the mechanisms of formation of some of the most common dermatoses, such as psoriasis, atopic dermatitis and vitiligo are discussed in detail. The review details the biological effects of Vitamin D in the skin. The article analyzes the legality of the use of Vitamin D-based drugs and their effectiveness in dermatological practice.

作者简介

Olga Pritulo

V.I. Vernadsky Crimean Federal University

Email: 55550256@mail.ru
ORCID iD: 0000-0001-6515-1924
SPIN 代码: 2988-8463

MD, Dr. Sci. (Med.), Professor

俄罗斯联邦, Simferopol

Dmitri Brodavkin

V.I. Vernadsky Crimean Federal University

编辑信件的主要联系方式.
Email: Borodavkind@yandex.ru
ORCID iD: 0000-0003-2312-3364
SPIN 代码: 9896-8142

Assistant Professor

俄罗斯联邦, Simferopol

Darya Ravlyuk

V.I. Vernadsky Crimean Federal University

Email: darya-ravluk@mail.ru
ORCID iD: 0000-0003-4280-0148
SPIN 代码: 5552-2313

MD, Cand. Sci. (Med.)

俄罗斯联邦, Simferopol

Elvira Bekirova

V.I. Vernadsky Crimean Federal University

Email: elvira8300@mail.ru
ORCID iD: 0000-0003-4097-2376
SPIN 代码: 3654-4925

MD, Cand. Sci. (Med.)

俄罗斯联邦, Simferopol

Alexey Petrov

V.I. Vernadsky Crimean Federal University

Email: ya.alexey2312@yandex.ru
ORCID iD: 0000-0003-4533-2415
SPIN 代码: 6070-2810

Graduate Student

俄罗斯联邦, Simferopol

参考

  1. Hernigou P, Sitbon J, Dubory A, Auregan JC. Vitamin D history part III: the “modern times”-new questions for orthopaedic practice: deficiency, cell therapy, osteomalacia, fractures, supplementation, infections. Int Orthop. 2019;43(7):1755–1771. doi: 10.1007/s00264-019-04334-w
  2. Olina AA, Padrul MM, Sadykova GK, Kobaidze EG. The importance of Vitamin D3 in the preconception preparation and prevention complications of pregnancy. Modern Problems Sci Education. 2015;(3):42–42. doi: 10.17513/spno.2015.3.123-17851
  3. Heaney RP. Vitamin D in health and disease. Clin J Am Soc Nephrol. 2008;3(5):1535–1541. doi: 10.2215/CJN.01160308
  4. Mostafa WZ, Hegazy RA. Vitamin D and the skin: Focus on a complex relationship: a review. J Adv Res. 2015;6(6):793–804. doi: 10.1016/j.jare.2014.01.011
  5. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–281. doi: 10.1056/NEJMra070553
  6. Kamangar F, Koo J, Heller M, et al. Oral Vitamin D, still a viable treatment option for psoriasis. J Dermatolog Treat. 2013;24(4):261–267. doi: 10.3109/09546634.2011.643219
  7. Bikle DD, Pillai S. Vitamin D, calcium, and epidermal differentiation. Endocr Rev. 1993;14(1):3–19. doi: 10.1210/edrv-14-1-3
  8. Ratnam AV, Bikle DD, Cho JK. 1,25-Dihydroxy Vitamin D3 enhances the calcium response of keratinocytes. J Cell Physiol. 1999;178(2):188–196. doi: 10.1002/(SICI)1097-4652(199902)178:2<188::AID-JCP8>3.0.CO;2-4
  9. Pillai S, Bikle DD, Su MJ, et al. 1,25-Dihydroxy Vitamin D3 upregulates the phosphatidylinositol signaling pathway in human keratinocytes by increasing phospholipase C levels. J Clin Invest. 1995;96(1):602–609. doi: 10.1172/JCI118075
  10. Tu CL, Chang W, Bikle DD. The extracellular calcium-sensing receptor is required for calcium-induced differentiation in human keratinocytes. J Biol Chem. 2001;276(44):41079–41085. doi: 10.1074/jbc.M10712220
  11. Oda Y, Uchida Y, Moradian S, et al. Vitamin D receptor and coactivators SRC2 and 3 regulate epidermis-specific sphingolipid production and permeability barrier formation. J Invest Dermatol. 2009;129(6):1367–1378. doi: 10.1038/jid.2008.380
  12. Schauber J, Dorschner RA, Coda AB, et al. Injury enhances TLR2 function and antimicrobial peptide expression through a Vitamin D-dependent mechanism. J Clin Invest. 2007;117(3):803–811. doi: 10.1172/JCI30142
  13. Van Etten E, Decallonne B, Verlinden L, et al. Analogs of 1α, 25-Dihydroxy Vitamin D3 as pluripotent immunomodulators. J Cell Biochem. 2003;88(2):223–226. doi: 10.1002/jcb.10329
  14. Gilhar A, Etzioni A, Paus R. Alopecia areata. N Engl J Med. 2012;366(16):1515–1525. doi: 10.1056/NEJMra1103442
  15. Pourzand C, Albieri-Borges A, Raczek NN. Shedding a new light on skin aging, iron- and redox-homeostasis and emerging natural antioxidants. Antioxidants (Basel). 2022;11(3):471. doi: 10.3390/antiox11030471
  16. Lee J, Youn JI. The photoprotective effect of 1,25-Dihydroxy Vitamin D3 on ultraviolet light B-induced damage in keratinocyte and its mechanism of action. J Dermatol Sci. 1998;18(1):11–18. doi: 10.1016/s0923-1811(98)00015-2
  17. Wong G, Gupta R, Dixon KM, et al. 1,25-Dihydroxy Vitamin D and three low-calcemic analogs decrease UV-induced DNA damage via the rapid response pathway. J Steroid Biochem Mol Biol. 2004;89–90(1-5):567–570. doi: 10.1016/j.jsbmb.2004.03.072
  18. De Haes P, Garmyn M, Degreef H, et al. 1,25-DihydroxyVitamin D3 inhibits ultraviolet B-induced apoptosis, Jun kinase activation, and interleukin-6 production in primary human keratinocytes. J Cell Biochem. 2003;89(4):663–673. doi: 10.1002/jcb.10540
  19. Dixon KM, Deo SS, Wong G, et al. Skin cancer prevention: a possible role of 1,25dihydroxyVitamin D3 and its analogs. J Steroid Biochem Mol Biol. 2005;97(1-2):137–143. doi: 10.1016/j.jsbmb.2005.06.006
  20. Dixon KM, Deo SS, Norman AW, et al. In vivo relevance for photoprotection by the Vitamin D rapid response pathway. J Steroid Biochem Mol Biol. 2007;103(3-5):451–456. doi: 10.1016/j.jsbmb.2006.11.016
  21. Gupta R, Dixon KM, Deo SS, et al. Photoprotection by 1,25-Dihydroxy Vitamin D3 is associated with an increase in p53 and a decrease in nitric oxide products. J Invest Dermatol. 2007;127(3):707–715. doi: 10.1038/sj.jid.5700597
  22. Revelli A, Massobrio M, Tesarik J. Nongenomic effects of 1alpha,25-Dihydroxy Vitamin D(3). Trends Endocrinol Metab. 1998;9(10):419–427. doi: 10.1016/s1043-2760(98)00100-3
  23. Hanada K, Sawamura D, Nakano H, Hashimoto I. Possible role of 1,25-dihydroxyVitamin D3-induced metallothionein in photoprotection against UVB injury in mouse skin and cultured rat keratinocytes. J Dermatol Sci. 1995;9(3):203–208. doi: 10.1016/0923-1811(94)00378-r
  24. Amor KT, Rashid RM, Mirmirani P. Does D matter? The role of Vitamin D in hair disorders and hair follicle cycling. Dermatol Online J. 2010;16(2):3. doi: 10.1016/s1043-2760(98)00100-3
  25. Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the Vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-Dihydroxy Vitamin D3. FASEB J. 2005;19(9):1067–1077. doi: 10.1096/fj.04-3284com
  26. Heilborn JD, Nilsson MF, Kratz G, et al. The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol. 2003;120(3):379–389. doi: 10.1046/j.1523-1747.2003.12069.x
  27. Weber G, Heilborn JD, Jimenez CI, et al. Vitamin D induces the antimicrobial protein hCAP18 in human skin. Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Invest Dermatol. 2005;124(5):1080–1082. doi: 10.1111/j.0022-202X.2005.23687.x
  28. Furue M, Kadono T. Psoriasis: behind the scenes. J Dermatol. 2016;43(1):4–8. doi: 10.1111/1346-8138.13186
  29. Dei-Cas I, Giliberto F, Luce L, et al. Metagenomic analysis of gut microbiota in non-treated plaque psoriasis patients stratified by disease severity: development of a new Psoriasis-Microbiome Index. Sci Rep. 2020;10(1):12754. doi: 10.1038/s41598-020-69537-3
  30. Orgaz-Molina J, Buendía-Eisman A, Arrabal-Polo MA, et al. Deficiency of serum concentration of 25-hydroxyVitamin D in psoriatic patients: a case-control study. J Am Acad Dermatol. 2012;67(5):931–938. doi: 10.1016/j.jaad.2012.01.040
  31. Wilson PB. Serum 25-Hydroxy Vitamin D status in individuals with psoriasis in the general population. Endocrine. 2013;44(2):537–539. doi: 10.1007/s12020-013-9989-8
  32. Zuchi MF, de Azevedo PO, Tanaka AA, et al. Serum levels of 25-Hydroxy Vitamin D in psoriatic patients. An Bras Dermatol. 2015;90(3):430–432. doi: 10.1590/abd1806-4841.20153524
  33. Maleki M, Nahidi Y, Azizahari S, et al. Serum 25-OH Vitamin D level in psoriatic patients and comparison with control subjects. J Cutan Med Surg. 2016;20(3):207–210. doi: 10.1177/1203475415622207
  34. Bergler-Czop B, Brzezińska-Wcislo L. Serum Vitamin D level ― the effect on the clinical course of psoriasis. Postepy Dermatol Alergol. 2016;33(6):445–449. doi: 10.5114/ada.2016.63883
  35. Bergler-Czop B, Brzezińska-Wcisło L. Serum Vitamin D level ― the effect on the clinical course of psoriasis. Postepy Dermatol Alergol. 2016;33(6):445–449. doi: 10.5114/ada.2016.63883
  36. Cai Y, Fleming C, Yan J. New insights of T cells in the pathogenesis of psoriasis. Cell Mol Immunol. 2012;9(4):302–309. doi: 10.1038/cmi.2012.15
  37. Lee YH, Song GG. Association between circulating 25-Hydroxy Vitamin D levels and psoriasis, and correlation with disease severity: a meta-analysis. Clin Exp Dermatol. 2018;43(5):529–535. doi: 10.1111/ced.13381
  38. Branisteanu DE, Cojocaru C, Diaconu R, et al. Update on the etiopathogenesis of psoriasis (Review). Exp Ther Med. 2022;23(3):201. doi: 10.3892/etm.2022.11124
  39. Wadhwa B, Relhan V, Goel K, et al. Vitamin D and skin diseases: a review. Indian J Dermatol Venereol Leprol. 2015;81(4):344–355. doi: 10.4103/0378-6323.159928
  40. Peric M, Koglin S, Dombrowski Y, et al. Vitamin D analog differentially control antimicrobial peptide/”alarmin” expression in psoriasis. PLoS One. 2009;4(7):123–125. doi: 10.1371/journal.pone.0006340
  41. Ng JC, Yew YW. Effect of Vitamin D serum levels and supplementation on atopic dermatitis: a systematic review and meta-analysis. Am J Clin Dermatol. 2022;23(3):267–275. doi: 10.1007/s40257-022-00677-0
  42. Fu H, Li Y, Huang H, Wang D. Serum Vitamin D level and efficacy of Vitamin D supplementation in children with atopic dermatitis: a systematic review and meta-analysis. Comput Math Methods Med. 2022;2022:9407888. doi: 10.1155/2022/9407888
  43. Hattangdi-Haridas SR, Lanham-New SA, Wong WH, et al. Vitamin D deficiency and effects of Vitamin D supplementation on disease severity in patients with atopic dermatitis: a systematic review and meta-analysis in adults and children. Nutrients. 2019;11(8):1854. doi: 10.3390/nu11081854
  44. Bergqvist C, Ezzedine K. Vitiligo: a focus on pathogenesis and its therapeutic implications. J Dermatol. 2021;48(3):252–270. doi: 10.1111/1346-8138.15743
  45. Al Ghamdi K, Kumar A, Moussa N. The role of Vitamin D in melanogenesis with an emphasis on vitiligo. Indian J Dermatol Venereol Leprol. 2013;79(6):750–758. doi: 10.4103/0378-6323.120720
  46. Frisoli ML, Essien K, Harris JE. Vitiligo: mechanisms of pathogenesis and treatment. Annu Rev Immunol. 2020;38: 621–648. doi: 10.1146/annurev-immunol-100919-023531
  47. Mahmmod Z, Ismael DK. Vitamin D deficiency in patients with vitiligo: a cross-sectional study from Basrah, Iraq. Cureus. 2021;13(12):e20733. doi: 10.7759/cureus.20733
  48. Kim TE, Kim SK, Shin MK, et al. Serum 25-Hydroxy Vitamin D levels and association of Vitamin D receptor gene polymorphisms in vitiligo. J Korean Med Sci. 2022;37(14):e110. doi: 10.3346/jkms.2022.37.e110
  49. Karagüzel G, Sakarya NP, Bahadır S, et al. Vitamin D status and the effects of oral Vitamin D treatment in children with vitiligo: a prospective study. Clin Nutr ESPEN. 2016;15:28–31. doi: 10.1016/j.clnesp.2016.05.006

补充文件

附件文件
动作
1. JATS XML
2. Fig. Vitamin D3 metabolism. ВДСБ ― vitamin D-binding protein; UVB ― ultraviolet radiation B; VDR ― vitamin D receptor.

下载 (68KB)

版权所有 © Pritulo O.A., Brodavkin D.V., Ravlyuk D.А., Bekirova E.Y., Petrov A.А., 2022

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


##common.cookie##