DECREASE OF MIGRATION ACTIVITY AND PROLIFERATION OF BRO MELANOMA CELLS BY MIR-4286 INHIBITION


Cite item

Full Text

Abstract

Mir-4286 takes part in the control of many oncogenes expression. One of signaling pathways regulated by mir-4286 is N-Glycan biosynthesis, hsa00510. Transfection of miR-4286 inhibitor in melanoma BRO cells leads to decreased activity of melanoma BRO cells migration and G2/M cell cycle arrest. These effects are supposed to be the result of the influence on N-Glycan biosynthesis. Therefore, mir-4286 inhibition can be the basis of new effective methods of melanoma treatment.

About the authors

S. V Tsyrenzhapova

Krasnoyarsk State Medical University n.a. V.F. Voyno-Yasenetsky

Krasnoyarsk, 660022, Russian Federation

E. Yu Sergeeva

Krasnoyarsk State Medical University n.a. V.F. Voyno-Yasenetsky

Krasnoyarsk, 660022, Russian Federation

M. B Aksenenko

Krasnoyarsk State Medical University n.a. V.F. Voyno-Yasenetsky

Krasnoyarsk, 660022, Russian Federation

N. V Palkina

Krasnoyarsk State Medical University n.a. V.F. Voyno-Yasenetsky

Krasnoyarsk, 660022, Russian Federation

A. V Komina

Krasnoyarsk State Medical University n.a. V.F. Voyno-Yasenetsky

Krasnoyarsk, 660022, Russian Federation

Tatiana G. Ruksha

Krasnoyarsk State Medical University n.a. V.F. Voyno-Yasenetsky

Email: tatyana_ruksha@mail.ru
MD, PhD, DSc., assistant professor, head of Pathophysiology Department Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russian Federation Krasnoyarsk, 660022, Russian Federation

References

  1. Wernli K.J., Henrikson N.B., Morrison C.C., Nguyen M., Pocobelli G., Whitlock E.P. Screening for Skin Cancer in Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2016; 316(4): 436-47. doi: 10.1001/jama.2016.5415.
  2. Greenlee R.T., Murray T., Bolden S., Wingo P.A. Cancer statistics, 2000. CA Cancer J. Clin. 2000; 50(1): 7-33.
  3. Rigel D.S., Carucci J.A. Malignant melanoma: prevention, early detection, and treatment in the 21st century. CA Cancer J. Clin. 2000; 50(4): 215-36.
  4. Ko J., Matharoo-Ball B., Billings S.D., Thomson B.J., Tang J.Y., Sarin K.Y., et al. Diagnostic Distinction of Malignant Melanoma and Benign Nevi by a Gene Expression Signature and Correlation to Clinical Outcomes. Cancer Epidemiol. Biomarkers Prev. 2017. doi: 10.1158/1055-9965.EPI-16-0958. Available at: http://cebp.aacrjournals.org/content/early/2017/04/04/1055-9965.EPI-16-0958.full-text.pdf (accessed 04.04.2017)
  5. Sand M. MicroRNAs in malignant tumors of the skin. First steps of tiny players in the skin to a new world of genomic medicine. Springer Fachmedien Wiesbaden; 2016.
  6. Zhang Y., Xu Z., Zhang T., Wang Y. Circulating microRNAs as diagnostic and prognostic tools for hepatocellular carcinoma. World J. Gastroenterol. 2015; 21(34): 9853-62. doi: 10.3748/wjg.v21.i34.9853.
  7. Su W., Hopkins S., Nesser N.K., Sopher B., Silvestroni A., Ammanuel S., et al. The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-Maf. J. Immunol. 2014; 192(1): 358-66. doi: 10.4049/jimmunol.1301397.
  8. Bin L., Leung D.Y. Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin. Immunol. 2016; 12: 52. doi: 10.1186/s13223-016-0158-5.
  9. Hawkes J.E., Nguyen G.H., Fujita M., Florell S.R., Callis Duffin K., Krueger G.G., et al. MicroRNAs in Psoriasis. J. Invest. Dermatol. 2016; 136(2): 365-71. doi: 10.1038/JID.2015.409.
  10. Sand M., Skrygan M., Sand D., Georgas D., Gambichler Th., Hahn S.A., et al. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res. 2013; 351(1): 85-98. doi: 10.1007/s00441-012-1514-5.
  11. Naidu S., Magee P., Garofalo M. MiRNA-based therapeutic intervention of cancer. J. Hematol. Oncol. 2015; 8: 68. doi: 10.1186/s13045-015-0162-0.
  12. Mayr C., Hemann M.T., Bartel D.P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 2007; 315(5818): 1576-9.
  13. Bieberich E. Synthesis, processing, and function of N-glycans in N-glycoproteins. Adv. Neurobiol. 2014; 9: 47-70. doi: 10.1007/978-1-4939-1154-7_3.
  14. Kuzu O.F., Noory M.A., Robertson G.P. The Role of Cholesterol in Cancer. Cancer Res. 2016; 76(8): 2063-70. doi: 10.1158/0008-5472.CAN-15-2613.
  15. Slominski A., Zmijewski M., Pawelek J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res. 2012; 25(1): 14-27. doi: 10.1111/j.1755-148X.2011.00898.x.
  16. Крахмаль Н.В., Завьялова М.В., Денисов Е.В., Вторушин С.В., Перельмутер В.М. Инвазия опухолевых эпителиальных клеток: механизмы и проявления. Acta Naturae. 2015; 7(2): 18-31
  17. Schultz M.J., Swindall A.F., Bellis S.L. Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev. 2012; 31(3-4): 501-18. doi: 10.1007/s10555-012-9359-7.
  18. Hang Q., Isaji T., Hou S., Zhou Y., Fukuda T., Gu J. N-Glycosylation of integrin α5 acts as a switch for EGFR-mediated complex formation of integrin α5β1 to α6β4. Sci. Rep. 2016; 6: 33507. doi: 10.1038/srep33507.

Copyright (c) 2017 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies